259,823 research outputs found
Kolmogorov-Burgers Model for Star Forming Turbulence
The process of star formation in interstellar molecular clouds is believed to
be controlled by driven supersonic magnetohydrodynamic turbulence. We suggest
that in the inertial range such turbulence obeys the Kolmogorov law, while in
the dissipative range it behaves as Burgers turbulence developing shock
singularities. On the base of the She-Leveque analytical model we then predict
the velocity power spectrum in the inertial range to be E_k ~ k^{-1.74}. This
result reproduces the observational Larson law, ~ l^{0.74...0.76},
[Larson, MNRAS 194 (1981) 809] and agrees well with recent numerical findings
by Padoan and Nordlund [astro-ph/0011465]. The application of the model to more
general dissipative structures, with higher fractal dimensionality, leads to
better agreement with recent observational results.Comment: revised, new material added, 8 page
Recommended from our members
Assimilating the Martian water cycle
Water ice clouds have been shown to alter the thermal structure of the Martian atmosphere. Here we discuss the assimilation of total column water vapour and dust optical depth data from the Thermal Emission Spectrometer (TES) into the UK/LMD MGCM, and compare the predictions of cloud and temperature in the assimilation with observations
Mathematical and computer modeling of electro-optic systems using a generic modeling approach
The conventional approach to modelling electro-optic sensor systems is to develop separate models for individual systems or classes of system, depending on the detector technology employed in the sensor and the application. However, this ignores commonality in design and in components of these systems. A generic approach is presented for modelling a variety of sensor systems operating in the infrared waveband that also allows systems to be modelled with different levels of detail and at different stages of the product lifecycle. The provision of different model types (parametric and image-flow descriptions) within the generic framework can allow valuable insights to be gained
Constraints on Stirring and Dissipation of MHD Turbulence in Molecular Clouds
We discuss constraints on the rates of stirring and dissipation of MHD
turbulence in molecular clouds. Recent MHD simulations suggest that turbulence
in clouds decays rapidly, thus providing a significant source of energy input,
particularly if driven at small scales by, for example, bipolar outflows. We
quantify the heating rates by combining the linewidth-size relations, which
describe global cloud properties, with numerically determined dissipation
rates. We argue that, if cloud turbulence is driven on small internal scales,
the CO flux (enhanced by emission from weakly supersonic shocks) will be
much larger than observed; this, in turn, would imply excitation temperatures
significantly above observed values. We reach two conclusions: (1) small-scale
driving by bipolar outflows cannot possibly account for cloud support and yield
long-lived clouds, unless the published MHD dissipation rates are seriously
overestimated; (2) driving on large scales (comparable to the cloud size) is
much more viable from an energetic standpoint, and if the actual net
dissipation rate is only slightly lower than what current MHD simulations
estimate, then the observationally inferred lifetimes and apparent virial
equilibrium of molecular clouds can be explained.Comment: 5 pages, 1 figure. To appear in ApJ (2001 April 10
Producing graphite with desired properties
Isotropic or anisotropic graphite is synthesized with precise control of particle size, distribution, and shape. The isotropic graphites are nearly perfectly isotropic, with thermal expansion coefficients two or three times those of ordinary graphites. The anisotropic graphites approach the anisotropy of pyrolytic graphite
Multifluid, Magnetohydrodynamic Shock Waves with Grain Dynamics II. Dust and the Critical Speed for C Shocks
This is the second in a series of papers on the effects of dust on
multifluid, MHD shock waves in weakly ionized molecular gas. We investigate the
influence of dust on the critical shock speed, v_crit, above which C shocks
cease to exist. Chernoff showed that v_crit cannot exceed the grain
magnetosound speed, v_gms, if dust grains are dynamically well coupled to the
magnetic field. We present numerical simulations of steady shocks where the
grains may be well- or poorly coupled to the field. We use a time-dependent,
multifluid MHD code that models the plasma as a system of interacting fluids:
neutral particles, ions, electrons, and various ``dust fluids'' comprised of
grains with different sizes and charges. Our simulations include grain inertia
and grain charge fluctuations but to highlight the essential physics we assume
adiabatic flow, single-size grains, and neglect the effects of chemistry. We
show that the existence of a phase speed v_phi does not necessarily mean that C
shocks will form for all shock speeds v_s less than v_phi. When the grains are
weakly coupled to the field, steady, adiabatic shocks resemble shocks with no
dust: the transition to J type flow occurs at v_crit = 2.76 v_nA, where v_nA is
the neutral Alfven speed, and steady shocks with v_s > 2.76 v_nA are J shocks
with magnetic precursors in the ion-electron fluid. When the grains are
strongly coupled to the field, v_crit = min(2.76 v_nA, v_gms). Shocks with
v_crit < v_s < v_gms have magnetic precursors in the ion-electron-dust fluid.
Shocks with v_s > v_gms have no magnetic precursor in any fluid. We present
time-dependent calculations to study the formation of steady multifluid shocks.
The dynamics differ qualitatively depending on whether or not the grains and
field are well coupled.Comment: 43 pages with 17 figures, aastex, accepted by The Astrophysical
Journa
Weak Lensing Determination of the Mass in Galaxy Halos
We detect the weak gravitational lensing distortion of 450,000 background
galaxies (20<R<23) by 790 foreground galaxies (R<18) selected from the Las
Campanas Redshift Survey (LCRS). This is the first detection of weak lensing by
field galaxies of known redshift, and as such permits us to reconstruct the
shear profile of the typical field galaxy halo in absolute physical units
(modulo H_0), and to investigate the dependence of halo mass upon galaxy
luminosity. This is also the first galaxy-galaxy lensing study for which the
calibration errors are negligible. Within a projected radius of 200 \hkpc, the
shear profile is consistent with an isothermal profile with circular velocity
164+-20 km/s for an L* galaxy, consistent with typical disk rotation at this
luminosity. This halo mass normalization, combined with the halo profile
derived by Fischer et al (2000) from lensing analysis SDSS data, places a lower
limit of (2.7+-0.6) x 10^{12}h^{-1} solar masses on the mass of an L* galaxy
halo, in good agreement with satellite galaxy studies. Given the known
luminosity function of LCRS galaxies, and the assumption that for galaxies, we determine that the mass within 260\hkpc of normal
galaxies contributes to the density of the Universe (for
) or for . These lensing data suggest
that (95% CL), only marginally in agreement with the usual
Faber-Jackson or Tully-Fisher scaling. This is the most
complete direct inventory of the matter content of the Universe to date.Comment: 18 pages, incl. 3 figures. Submitted to ApJ 6/7/00, still no response
from the referee after four months
Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands
Acknowledgements This work contributes to the N-Circle project (grant number BB/N013484/1), and CINAg (BB/N013468/1) Virtual Joint Centres on Agricultural Nitrogen (funded by the Newton Fund via UK BBSRC/NERC), U-GRASS (grant number NE/M016900/1), the Belmont Forum/FACCE-JPI DEVIL project (grant number NE/M021327/1), Soils-R-GGREAT (grant number NE/P019455/1), ADVENT (grant number NE/M019713/1), Sêr Cymru LCEE-NRN project, Climate-Smart Grass and the Scottish Government’s Strategic Research Programme.Peer reviewedPublisher PD
- …
