475 research outputs found

    Nuclear weak interaction rates in primordial nucleosynthesis

    Full text link
    We calculate the weak interaction rates of selected light nuclei during the epoch of Big Bang Nucleosynthesis (BBN), and we assess the impact of these rates on nuclear abundance flow histories and on final light element abundance yields. We consider electron and electron antineutrino captures on 3He and 7Be, and the reverse processes of positron capture and electron neutrino capture on 3H and 7Li. We also compute the rates of positron and electron neutrino capture on 6He. We calculate beta and positron decay transitions where appropriate. As expected, the final standard BBN abundance yields are little affected by addition of these weak processes, though there can be slight alterations of nuclear flow histories. However, non-standard BBN scenarios, e.g., those involving out of equilibrium particle decay with energetic final state neutrinos, may be affected by these processes.Comment: 10 pages, 6 figure

    Big Bang Nucleosynthesis with Independent Neutrino Distribution Functions

    Full text link
    We have performed new Big Bang Nucleosynthesis calculations which employ arbitrarily-specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally-determined primordial helium and deuterium abundances. We have modified a standard BBN code to perform these calculations and have made it available to the community.Comment: 9 pages, 5 figure

    Weak Interaction Rate Coulomb Corrections in Big Bang Nucleosynthesis

    Full text link
    We have applied a fully relativistic Coulomb wave correction to the weak reactions in the full Kawano/Wagoner Big Bang Nucleosynthesis (BBN) code. We have also added the zero temperature radiative correction. We find that using this higher accuracy Coulomb correction results in good agreement with previous work, giving only a modest 0.04 percent increase in helium mass fraction over correction prescriptions applied previously in BBN calculations. We have calculated the effect of these corrections on other light element abundance yields in BBN and we have studied these yields as functions of electron neutrino lepton number. This has allowed insights into the role of the Coulomb correction in the setting of the neutron-to-proton ratio during the BBN epoch. We find that the lepton capture processes' contributions to this ratio are only second order in the Coulomb correction.Comment: 8 pages, 3 figure

    Reflections on that-has-been : Snapshots from the students-as-partners movement

    Get PDF
    EDITORIAL NOTE (Alison): The idea for this multipart reflective essay emerged from first author Christel Brost’s reflections on her experience of striving to develop a students-as-partners approach within the context of a summer institute and then back at her home institution. To aid reflection on these experiences, Christel used Roland Barthe’s construct of that-has-been, which she explains below, to examine several “mental snapshots” of her experiences and what those mean for her personally and for students-as-partners work. Inspired by the vivid, emotion filled representation of Christel’s “snapshots,” we (co-editors of reflective essays for the journal, Anita Ntem and Alison Cook-Sather) invited participants from two other venues to share their reflections within the same frame. Authors of each section of this essay use Barthes’ construct to “zoom in” on different moments and lived experiences of partnership, creating mental snapshots from three students-as-partners venues. The first venue is the Change Institute at the May 2017 International Summer Institute on Students as Partners held at McMaster University, in Hamilton, Ontario, Canada. The second is the May 2017 Pedagogic Partnership Conference held at Lafayette College in, Easton, Pennsylvania, in the United States. The third is the June 2017 RAISE International Partnership Colloquium held at Birmingham City University in Birmingham, England.Non peer reviewedFinal Published versio

    Dynamical suppression of large instantons

    Full text link
    We investigate the distribution of instanton sizes in the framework of a simplified model for ensembles of instantons. This model takes into account the non-diluteness of instantons. The infrared problem for the integration over instanton sizes is dealt with in a self-consistent manner by approximating instanton interactions by a repulsive hard core potential. This leads to a dynamical suppression of large instantons. The characteristic features of the instanton size distribution are studied by means of analytic and Monte Carlo methods. We find a power law behaviour for small sizes, consistent with the semi-classical results. At large instanton sizes the distribution decays exponentially. The results are compared with those from lattice simulations.Comment: 2 pages, 1 figure, talk presented at Lattice2001(confinement

    Historical gridded reconstruction of potential evapotranspiration for the UK

    Get PDF
    Potential evapotranspiration (PET) is a necessary input data for most hydrological models and is often needed at a daily time step. An accurate estimation of PET requires many input climate variables which are, in most cases, not available prior to the 1960s for the UK, nor indeed most parts of the world. Therefore, when applying hydrological models to earlier periods, modellers have to rely on PET estimations derived from simplified methods. Given that only monthly observed temperature data is readily available for the late 19th and early 20th century at a national scale for the UK, the objective of this work was to derive the best possible UK-wide gridded PET dataset from the limited data available. To that end, firstly, a combination of (i) seven temperature-based PET equations, (ii) four different calibration approaches and (iii) seven input temperature data were evaluated. For this evaluation, a gridded daily PET product based on the physically based Penman–Monteith equation (the CHESS PET dataset) was used, the rationale being that this provides a reliable “ground truth” PET dataset for evaluation purposes, given that no directly observed, distributed PET datasets exist. The performance of the models was also compared to a “naïve method”, which is defined as the simplest possible estimation of PET in the absence of any available climate data. The “naïve method” used in this study is the CHESS PET daily long-term average (the period from 1961 to 1990 was chosen), or CHESS-PET daily climatology. The analysis revealed that the type of calibration and the input temperature dataset had only a minor effect on the accuracy of the PET estimations at catchment scale. From the seven equations tested, only the calibrated version of the McGuinness–Bordne equation was able to outperform the “naïve method” and was therefore used to derive the gridded, reconstructed dataset. The equation was calibrated using 43 catchments across Great Britain. The dataset produced is a 5 km gridded PET dataset for the period 1891 to 2015, using the Met Office 5 km monthly gridded temperature data available for that time period as input data for the PET equation. The dataset includes daily and monthly PET grids and is complemented with a suite of mapped performance metrics to help users assess the quality of the data spatially. This dataset is expected to be particularly valuable as input to hydrological models for any catchment in the UK. The data can be accessed at https://doi.org/10.5285/17b9c4f7-1c30-4b6f-b2fe-f7780159939c

    Impact of DNA ligase IV on the fidelity of end joining in human cells

    Get PDF
    A DNA ligase IV (LIG4)‐null human pre‐B cell line and human cell lines with hypomorphic mutations in LIG4 are significantly impaired in the frequency and fidelity of end joining using an in vivo plasmid assay. Analysis of the null line demonstrates the existence of an error‐prone DNA ligase IV‐independent rejoining mechanism in mammalian cells. Analysis of lines with hypomorphic mutations demonstrates that residual DNA ligase IV activity, which is sufficient to promote efficient end joining, nevertheless can result in decreased fidelity of rejoining. Thus, DNA ligase IV is an important factor influencing the fidelity of end joining in vivo. The LIG4‐defective cell lines also showed impaired end joining in an in vitro assay using cell‐free extracts. Elevated degradation of the terminal nucleotide was observed in a LIG4‐defective line, and addition of the DNA ligase IV–XRCC4 complex restored end protection. End protection by DNA ligase IV was not dependent upon ligation. Finally, using purified proteins, we demonstrate that DNA ligase IV–XRCC4 is able to protect DNA ends from degradation by T7 exonuclease. Thus, the ability of DNA ligase IV–XRCC4 to protect DNA ends may contribute to the ability of DNA ligase IV to promote accurate rejoining in vivo

    Benchmarking ensemble streamflow prediction skill in the UK

    Get PDF
    Skilful hydrological forecasts at sub-seasonal to seasonal lead times would be extremely beneficial for decision-making in water resources management, hydropower operations, and agriculture, especially during drought conditions. Ensemble streamflow prediction (ESP) is a well-established method for generating an ensemble of streamflow forecasts in the absence of skilful future meteorological predictions, instead using initial hydrologic conditions (IHCs), such as soil moisture, groundwater, and snow, as the source of skill. We benchmark when and where the ESP method is skilful across a diverse sample of 314 catchments in the UK and explore the relationship between catchment storage and ESP skill. The GR4J hydrological model was forced with historic climate sequences to produce a 51-member ensemble of streamflow hindcasts. We evaluated forecast skill seamlessly from lead times of 1 day to 12 months initialized at the first of each month over a 50-year hindcast period from 1965 to 2015. Results showed ESP was skilful against a climatology benchmark forecast in the majority of catchments across all lead times up to a year ahead, but the degree of skill was strongly conditional on lead time, forecast initialization month, and individual catchment location and storage properties. UK-wide mean ESP skill decayed exponentially as a function of lead time with continuous ranked probability skill scores across the year of 0.75, 0.20, and 0.11 for 1-day, 1-month, and 3-month lead times, respectively. However, skill was not uniform across all initialization months. For lead times up to 1 month, ESP skill was higher than average when initialized in summer and lower in winter months, whereas for longer seasonal and annual lead times skill was higher when initialized in autumn and winter months and lowest in spring. ESP was most skilful in the south and east of the UK, where slower responding catchments with higher soil moisture and groundwater storage are mainly located; correlation between catchment base flow index (BFI) and ESP skill was very strong (Spearman's rank correlation coefficient = 0.90 at 1-month lead time). This was in contrast to the more highly responsive catchments in the north and west which were generally not skilful at seasonal lead times. Overall, this work provides scientific justification for when and where use of such a relatively simple forecasting approach is appropriate in the UK. This study, furthermore, creates a low cost benchmark against which potential skill improvements from more sophisticated hydro-meteorological ensemble prediction systems can be judged

    Personalisation and recommender systems in digital libraries

    Get PDF
    Widespread use of the Internet has resulted in digital libraries that are increasingly used by diverse communities of users for diverse purposes and in which sharing and collaboration have become important social elements. As such libraries become commonplace, as their contents and services become more varied, and as their patrons become more experienced with computer technology, users will expect more sophisticated services from these libraries. A simple search function, normally an integral part of any digital library, increasingly leads to user frustration as user needs become more complex and as the volume of managed information increases. Proactive digital libraries, where the library evolves from being passive and untailored, are seen as offering great potential for addressing and overcoming these issues and include techniques such as personalisation and recommender systems. In this paper, following on from the DELOS/NSF Working Group on Personalisation and Recommender Systems for Digital Libraries, which met and reported during 2003, we present some background material on the scope of personalisation and recommender systems in digital libraries. We then outline the working group’s vision for the evolution of digital libraries and the role that personalisation and recommender systems will play, and we present a series of research challenges and specific recommendations and research priorities for the field
    corecore