11,347 research outputs found

    Nonmethane hydrocarbon and halocarbon distributions during Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange, June 1992

    Get PDF
    Aircraft measurements of selected nonmethane hydrocarbon and halocarbon species were made in the lower troposphere of the NE Atlantic near the Azores, Portugal, during June 1992 as part of the Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange. In this paper, the impact of continental outflow from both Europe and North America on the study region were assessed. Four main air mass types were characterized from trajectories and trace gas concentrations: clean marine from the Atlantic, and continental air from the Iberian Peninsula, the British Isles and Northern Europe, and North America. Each classification exhibited trace gas concentrations that had been modified en route by photochemical processes and mixing. Comparison with the clean marine boundary layer (MBL) shows that the boundary layer of the predominantly continental air masses were enhanced in hydrocarbons and halocarbons by factors of approximately 2 for ethane, 5 for propane, 2-6 for ethyne and benzene, and 2-3 for C2Cl4. The same air masses also exhibited large ozone enhancements, with 2 to 3 times higher mixing ratios in the continental boundary layer air compared to the clean MBL. This indicates a primarily anthropogenic photochemical source for a significant fraction of the lower tropospheric ozone in this region. Methyl bromide exhibited on average 10-20% higher concentrations in the boundary layer affected by continental outflow than in the clean MBL, and was seen to be enhanced in individual plumes of air of continental origin. This is consistent with significant anthropogenic sources for methyl bromide. In addition, median MBL concentrations of ethene and methyl iodide showed enhancements of approximately a factor of 2 above free tropospheric values, suggesting primarily coastal/oceanic sources for these species. Copyright 1996 by the American Geophysical Union

    The indicators of pupil opinion and teacher interactivity for inquiry-based science teaching

    Get PDF
    In order to establish those practices which underpin a science teaching performance that combines pupil enthusiasm and creative classrooms, it will be necessary to uncover evidence of inquiry-based learning experiences in science that can provide a warrant for theory and practice that will assist new science teachers in recognising and developing opportunities for investigative activity. Remaining aware, however, of the recurring theme in contemporary educational research which suggests that learning to teach has an important affective dimension associated with developing relationships and the formation of a teaching identity – a model of development which thus transcends atheoretical checklists of professional standards or pedagogical steps – the nature of that evidence will necessarily be in the area of the formative development of new teachers’ professional knowledge and understanding

    Becoming an effective science teacher at the Department of Curricular Studies, University of Strathclyde

    Get PDF
    In an article for the International section, Allan Blake, Colin Smith and Jim McNally from Strathclyde report on the start of a very important EU-funded project, involving 15 countries, which looks at how ‘inquiry-based science’ can be promoted in science teaching and the significance for teacher education. In their view, inquiry-based science is more about open-endedness and uncertainty of outcome than routine (prescribed) practical work. STE will keep track of this important project and we will report on its progress and outcomes in future issues

    Hydrocarbon and halocarbon measurements as photochemical and dynamical indicators of atmospheric hydroxyl, atomic chlorine, and vertical mixing obtained during Lagrangian flights

    Get PDF
    Nonmethane hydrocarbons and halocarbons were measured during two Lagrangian experiments conducted in the lower troposphere of the North Atlantic as part of the June 1992, Atlantic Stratosphere Transition Experiment/Marine Aerosol and Gas Exchange (ASTEX/MAGE) expedition. The first experiment was performed in very clean marine air. Meteorological observations indicate that the height of the marine boundary layer rose rapidly, entraining free tropospheric air. However, the free tropospheric and marine boundary layer halocarbon concentrations were too similar to allow this entrainment to be quantified by these measurements. The second Lagrangian experiment took place along the concentration gradient of an aged continental air mass advecting from Europe. The trace gas measurements confirm that the National Center for Atmospheric Research (NCAR) Electra aircraft successfully intercepted the same air mass on consecutive days. Two layers, a surface layer and a mixed layer with chemically distinct compositions, were present within the marine boundary layer. The composition of the free troposphere was very different from that of the mixed layer, making entrainment from the free troposphere evident Concentrations of the nonmethane hydrocarbons in the Lagrangian surface layer were observed to become depleted relative to the longer-lived tetrachloroethene. A best fit to the observations was calculated using various combinations of the three parameters, loss by reaction with hydroxyl, loss by reaction with chlorine, and/or dilution from the mixed layer. These calculations provided estimated average concentrations in the surface layer for a 5-hour period from dawn to 11 UT of 0.3±0.5 ×106 molecules cm-3 for HO, and 3.3±;1.1 ×104 molecules cm-3 for Cl. Noontime concentration estimates were 2.6±0.7 ×106 molecules cm-3 for HO and 6.5±1.4 ×104 molecules cm-3 for Cl. Copyright 1996 by the American Geophysical Union

    Cosmological Forecasts for Combined and Next Generation Peculiar Velocity Surveys

    Full text link
    Peculiar velocity surveys present a very promising route to measuring the growth rate of large-scale structure and its scale dependence. However, individual peculiar velocity surveys suffer from large statistical errors due to the intrinsic scatter in the relations used to infer a galaxy's true distance. In this context we use a Fisher Matrix formalism to investigate the statistical benefits of combining multiple peculiar velocity surveys. We find that for all cases we consider there is a marked improvement on constraints on the linear growth rate fσ8f\sigma_{8}. For example, the constraining power of only a few peculiar velocity measurements is such that the addition of the 2MASS Tully-Fisher survey (containing only ∌2,000\sim2,000 galaxies) to the full redshift and peculiar velocity samples of the 6-degree Field Galaxy Survey (containing ∌110,000\sim 110,000 redshifts and ∌9,000\sim 9,000 velocities) can improve growth rate constraints by ∌20%\sim20\%. Furthermore, the combination of the future TAIPAN and WALLABY+WNSHS surveys has the potential to reach a ∌3%\sim3\% error on fσ8f\sigma_{8}, which will place tight limits on possible extensions to General Relativity. We then turn to look at potential systematics in growth rate measurements that can arise due to incorrect calibration of the peculiar velocity zero-point and from scale-dependent spatial and velocity bias. For next generation surveys, we find that neglecting velocity bias in particular has the potential to bias constraints on the growth rate by over 5σ5\sigma, but that an offset in the zero-point has negligible impact on the velocity power spectrum.Comment: 24 pages, 11 figures, 7 tables. Accepted for publication in MNRA

    Modelling mucociliary clearance

    Get PDF
    Mathematical modelling of the fluid mechanics of mucociliary clearance (MCC) is reviewed and future challenges for researchers are discussed. The morphology of the bronchial and tracheal airway surface liquid (ASL) and ciliated epithelium are briefly introduced. The cilia beat cycle, beat frequency and metachronal coordination are described, along with the rheology of the mucous layer. Theoretical modelling of MCC from the late 1960s onwards is reviewed, and distinctions between ‘phenomenological’, ‘slender body theory’ and recent ‘fluid–structure interaction’ models are explained.\ud \ud The ASL consists of two layers, an overlying mucous layer and underlying watery periciliary layer (PCL) which bathes the cilia. Previous models have predicted very little transport of fluid in the PCL compared with the mucous layer. Fluorescent tracer transport experiments on human airway cultures conducted by Matsui et al. [Matsui, H., Randell, S.H., Peretti, S.W., Davis, C.W., Boucher, R.C., 1998. Coordinated clearance of periciliary liquid and mucus from airway surfaces. J. Clin. Invest. 102 (6), 1125–1131] apparently showed equal transport in both the PCL and mucous layer. Recent attempts to resolve this discrepancy by the present authors are reviewed, along with associated modelling findings. These findings have suggested new insights into the interaction of cilia with mucus due to pressure gradients associated with the flat PCL/mucus interface. This phenomenon complements previously known mechanisms for ciliary propulsion. Modelling results are related to clinical findings, in particular the increased MCC observed in patients with pseudohypoaldosteronism. Recent important advances by several groups in modelling the fluid–structure interaction by which the cilia movement and fluid transport emerge from specification of internal mechanics, viscous and elastic forces are reviewed. Finally, we discuss the limitations of existing work, and the challenges for the next generation of models, which may provide further insight into this complex and vital system
    • 

    corecore