2,078 research outputs found

    Collaborating for Resilience: a practitioner’s guide

    Get PDF
    In many countries, resource conflict is a leading risk to livelihoods. For some communities, it is a matter of survival. Yet, many development interventions aiming to address these challenges fail or fall far short of their potential. Common reasons include conflicting agendas, power and politics; poor local commitment and leadership; lack of coordination; plus high costs and low sustainability, as programs often unravel when development finance ends. Overcoming these obstacles requires a shift from typical approaches to planning, implementing and evaluating rural development and natural resource management initiatives. This manual introduces one approach to achieving such breakthroughs in collective action, called Collaborating for Resilience. The manual presents a set of principles and field-tested guidance on exploring the potential for collaboration, facilitating dialogue and action, evaluating outcomes, and sustaining collaboration over time

    Simple planar Bragg grating devices for photonic Hilbert transform

    No full text
    Hilbert transformers are important devices widely used in information processing and signal analysis in the electronic domain. For example, for spectral efficiency improvement, it is used to construct the analytic signal for single sideband (SSB) modulation from a real signal. Photonic Hilbert transformers (PHTs) are proposed for a similar range of applications and would allow the direct processing of optical signals at bandwidths far beyond current electronic technologies

    Realisation of photonic Hilbert transformer with a simple planar Bragg grating

    No full text
    Photonic Hilbert transformers (PHTs) are desirable for the direct processing of optical signals at high speeds and operation bandwidths, allowing optical networks to outperform current electronic technologies. We practically demonstrate a photonic Hilbert transformer in planar geometry; utilising a pi-phase shift planar Bragg grating with proper apodization profile. The device is fabricated by direct UV grating writing technology in silica-on-silicon [1]. The PHT has a pi-phase shift at the zero point of the frequency response, whereas the amplitude remains constant. The pi-phase shift in PHT is simply induced by placing a pi-phase shift in the refractive index modulation. The constant amplitude is achieved by precise apodization of the grating coupling strength, while the apodization profile is given by [2]. With our current direct UV writing technology, the proposed grating can be fabricated in a much higher accuracy then the conventional fibre Bragg grating manufacturing technique. We will present our latest work on more complex apodized gratings to obtain the ideal realisable frequency and temporal responses for PHTs

    Direct optical observation of walls and disclination effects in active photonic devices

    No full text
    Liquid crystal tunable Bragg Gratings defined in planar substrates via a laser patterning technique exhibit complex wavelength tuning. This tuning displays threshold points and hysteresis. These tuning features are shown to be a manifestation of physical processes occurring in the confined geometry of our tunable devices. Such physical processes include the formation and removal of line disclinations and an associated wall. We discuss the effect of walls in the liquid crystal with regards to voltage tuning characteristics and whether they may allow faster wavelength tuning

    Tandem mirror with axisymmetric central cell ion

    Get PDF

    Effects of time resolution on finances and self-consumption when modeling domestic PV-battery systems

    Get PDF
    When modeling a renewable energy system, the timestep to use is an important consideration. Timestep, or time resolution, can have an impact on results, influencing the sizing of the system and whether or not to invest at all. In this work, real measured data for an entire year at 15-s resolution from a rooftop PV array and 8 household loads in the UK are used. The PV and load time series are averaged to lower resolution: 1-min, 5-min, 30-min and 1-h, and the results from using them as input to a 25-year simulation of PV-only and PV-battery systems are compared to the 15-s resolution results. Load resolution is confirmed to be more important than PV resolution for improving accuracy of self-sufficiency and cost metrics; the presence of a battery is confirmed to reduce the errors of using low resolution compared to PV-only. However, these findings only apply to the commonly tested Greedy algorithm but not the newly developed Emissions Arbitrage algorithm. A wider range of metrics are calculated here than in previous work, finding consistency in that low resolution overstates the benefits of PV-battery, but variation in percentage difference across the metrics used. Further aspects not studied before include: the diminishing returns in computation speed when time resolution is lowered, and the effect of time resolution on the tipping point when certain configurations become more attractive propositions than others. Time resolution of input data and modeling are issues not only for researchers in academia and industry, but from a consumer protection perspective too

    Constraining the variation of the coupling constants with big bang nucleosynthesis

    Get PDF
    We consider the possibility of the coupling constants of the SU(3)×SU(2)×U(1)SU(3)\times SU(2)\times U(1) gauge interactions at the time of big bang nucleosynthesis having taken different values from what we measure at present, and investigate the allowed difference requiring the shift in the coupling constants not violate the successful calculation of the primordial abundances of the light elements. We vary gauge couplings and Yukawa couplings (fermion masses) using a model in which their relative variations are governed by a single scalar field, dilaton, as found in string theory. The results include a limit on the fine structure constant 6.0×104<ΔαEM/αEM<1.5×104-6.0\times10^{-4}<\Delta\alpha_{EM}/\alpha_{EM}<1.5\times10^{-4}, which is two orders stricter than the limit obtained by considering the variation of αEM\alpha_{EM} alone.Comment: 7 page

    Primordial nucleosynthesis and hadronic decay of a massive particle with a relatively short lifetime

    Get PDF
    In this paper we consider the effects on big bang nucleosynthesis (BBN) of the hadronic decay of a long-lived massive particle. If high-energy hadrons are emitted near the BBN epoch (t102t \sim 10^{-2} -- 102sec10^2 \sec), they extraordinarily inter-convert the background nucleons each other even after the freeze-out time of the neutron to proton ratio. Then, produced light element abundances are changed, and that may result in a significant discrepancy between standard BBN and observations. Especially on the theoretical side, now we can obtain a lot of experimental data of hadrons and simulate the hadronic decay process executing the numerical code of the hadron fragmentation even in the high energy region where we have no experimental data. Using the light element abundances computed in the hadron-injection scenario, we derive a constraint on properties of such a particle by comparing our theoretical results with observations.Comment: 33 pages, 14 postscript figures, reference added, typo corrected, to appear in Phys. Rev.

    All-optical signal processing using planar Bragg gratings

    No full text
    The fabrication techniques of Bragg gratings broadly fall into two categories: that are holographic, and that are non-interferometric, based on the periodical UV radiation along the photosensitive medium. The fabrication technique in this work is the direct UV grating writing (DGW). This method involves focusing two crossed laser beams (lambda=244nm) into a photosensitive core layer. Precise translation of the sample and modulation of the interference pattern define the channel waveguide and simultaneously create grating structures, shown in Figure 1. First developed at Optoelectronics Research Centre in 2002, it has similarities to the UV writing techniques used for fiber Bragg grating inscription. Advanced grating properties such as chirp, phase shifts, and apodisation are introduced by adjusting the laser intensity and the translating speed
    corecore