4,181 research outputs found

    Distinct forms of synaptic inhibition and neuromodulation regulate calretinin positive neuron excitability in the spinal cord dorsal horn

    Get PDF
    The dorsal horn (DH) of the spinal cord contains a heterogenous population of neurons that process incoming sensory signals before information ascends to the brain. We have recently characterized calretinin-expressing (CR+) neurons in the DH and shown that they can be divided into excitatory and inhibitory subpopulations. The excitatory population receives high-frequency excitatory synaptic input and expresses delayed firing action potential discharge, whereas the inhibitory population receives weak excitatory drive and exhibits tonic or initial bursting discharge. Here, we characterize inhibitory synaptic input and neuromodulation in the two CR+ populations, in order to determine how each is regulated. We show that excitatory CR+ neurons receive mixed inhibition from GABAergic and glycinergic sources, whereas inhibitory CR+ neurons receive inhibition, which is dominated by glycine. Noradrenaline and serotonin produced robust outward currents in excitatory CR+ neurons, predicting an inhibitory action on these neurons, but neither neuromodulator produced a response in CR+ inhibitory neurons. In contrast, enkephalin (along with selective mu and delta opioid receptor agonists) produced outward currents in inhibitory CR+ neurons, consistent with an inhibitory action but did not affect the excitatory CR+ population. Our findings show that the pharmacology of inhibitory inputs and neuromodulator actions on CR+ cells, along with their excitatory inputs can define these two subpopulations further, and this could be exploited to modulate discrete aspects of sensory processing selectively in the DH

    Safety and protection for large-scale magnet systems -- FY 91 report

    Get PDF

    In vitro, acidic, non-proteinaceous antifungal activities of lactic acid bacteria isolated from salad vegetables against human pathogenic Candida albicans

    Get PDF
    Background: The antagonistic abilities of lactic acid bacteria (LAB) against clinical isolates of Candida albicans are not quite widely reported and such are even scarce in Nigeria. This study therefore investigated inhibitory potentials of LAB isolated from locally grown cabbage, cucumber and lettuce against four (4) clinical isolates of C. albicans.Methods: The cell free supernatants (CFS) generated from LAB culture filtrate was evaluated for anti-candida activity using agar well diffusion method, and the CFS-LAB pH was measured and neutralized using standard methods. The proteinaceous inhibitory metabolites were assayed for using sodium dodecylsulphate polyacrilamide gel electrophoresis (SDS-PAGE) technique. The LAB strains used were previously isolated and identified by 16S rRNA partial sequencing and their data submitted to GenBank for accessioning.Results: The CFS of six (6) LAB strains showed varying degrees of anti-candida activity. Pediococcus pentosaceus BTA 51 from cucumber showed the widest inhibition zone of 14 mm while at neutral pH, it was 12 mm diameter. Weissella confusa BTA 20, BTA 40 isolated from cabbage and lettuce produced 10 mm and 12 mm zones of inhibition at acidic and neutral pH respectively. Lactobacillus plantarum BTA 07 from lettuce showed inhibition zone of 12 mm while L. fermentum BTA 47 and BTA 62 from cucumber showed zones of 14 mm each in acidic pH only. The SDS-PAGE did not detect any proteinaceous substances.Conclusion: In conclusion, LAB isolated from cabbage, cucumber and lettuce produced organic acids, non proteinaceous metabolites at neutral pH, exhibiting invitro inhibitory abilities against clinical isolates of C. albicans.Keywords: In vitro, Lactic acid bacteria, 16S rRNA, antifungal, SDS-PAGE, salad vegetable

    Melittin-induced changes in lipid multilayers. A solid-state NMR study

    Get PDF
    Solid-state 1H, 13C, 14N, and 31P NMR spectroscopy was used to study the effects of the bee venom peptide, melittin, on aligned multilayers of dimyristoyl-, dilauryl- and ditetradecyl-phosphatidylcholines above the gel to liquid-crystalline transition temperature, Tc. Both 31P spectra from the lipid headgroups and 1H resonances from the lipid acyl chain methylene groups indicate that the peptide does not affect the mosaic spread of the lipid molecules at lipid:peptide molar ratios of 10:1, or higher. None of the samples prepared above Tc showed any evidence of the formation of hexagonal or isotropic phases. Melittin-induced changes in the chemical shift anisotropy of the headgroup phosphate and the lipid carbonyl groups, and in the choline 14N quadrupole splittings, show that the peptide has effects on the headgroup order and on the molecular organization in the sections of the acyl chains nearest to the bilayer surface. The spin-lattice relaxation time for the lipid acyl chain methylene protons was found to increase and the rotating-frame longitudinal relaxation time to markedly decrease with the addition of melittin, suggesting that motions on the nanosecond time scale are restricted, whereas the slower, collective motions are enhanced in the presence of the peptide

    Thermal conductivity enhancement of laser induced graphene foam upon P3HT infiltration

    Get PDF
    Significant research has been dedicated to the exploration of high thermal conductivity polymer composite materials with conductive filler particles for use in heat transfer applications. However, poor particle dispersibility and interfacial phonon scattering have limited the effective composite thermal conductivity. Three-dimensional foams with high ligament thermal conductivity offer a potential solution to the two aforementioned problems but are traditionally fabricated through expensive and/or complex manufacturing methods. Here, laser induced graphene foams, fabricated through a simple and cost effective laser ablation method, are infiltrated with poly(3-hexylthiophene) in a step-wise fashion to demonstrate the impact of polymer on the thermal conductivity of the composite system. Surprisingly, the addition of polymer results in a drastic (250%) improvement in material thermal conductivity, enhancing the graphene foam's thermal conductivity from 0.68 W/m-K to 1.72 W/m-K for the fully infiltrated composite material. Graphene foam density measurements and theoretical models are utilized to estimate the effective ribbon thermal conductivity as a function of polymer filling. Here, it is proposed that the polymer solution acts as a binding material, which draws graphene ligaments together through elastocapillary coalescence and bonds these ligaments upon drying, resulting in greatly reduced contact resistance within the foam and an effective thermal conductivity improvement greater than what would be expected from the addition of polymer alone

    Lattice-switch Monte Carlo

    Full text link
    We present a Monte Carlo method for the direct evaluation of the difference between the free energies of two crystal structures. The method is built on a lattice-switch transformation that maps a configuration of one structure onto a candidate configuration of the other by `switching' one set of lattice vectors for the other, while keeping the displacements with respect to the lattice sites constant. The sampling of the displacement configurations is biased, multicanonically, to favor paths leading to `gateway' arrangements for which the Monte Carlo switch to the candidate configuration will be accepted. The configurations of both structures can then be efficiently sampled in a single process, and the difference between their free energies evaluated from their measured probabilities. We explore and exploit the method in the context of extensive studies of systems of hard spheres. We show that the efficiency of the method is controlled by the extent to which the switch conserves correlated microstructure. We also show how, microscopically, the procedure works: the system finds gateway arrangements which fulfill the sampling bias intelligently. We establish, with high precision, the differences between the free energies of the two close packed structures (fcc and hcp) in both the constant density and the constant pressure ensembles.Comment: 34 pages, 9 figures, RevTeX. To appear in Phys. Rev.

    A model of ant route navigation driven by scene familiarity

    Get PDF
    In this paper we propose a model of visually guided route navigation in ants that captures the known properties of real behaviour whilst retaining mechanistic simplicity and thus biological plausibility. For an ant, the coupling of movement and viewing direction means that a familiar view specifies a familiar direction of movement. Since the views experienced along a habitual route will be more familiar, route navigation can be re-cast as a search for familiar views. This search can be performed with a simple scanning routine, a behaviour that ants have been observed to perform. We test this proposed route navigation strategy in simulation, by learning a series of routes through visually cluttered environments consisting of objects that are only distinguishable as silhouettes against the sky. In the first instance we determine view familiarity by exhaustive comparison with the set of views experienced during training. In further experiments we train an artificial neural network to perform familiarity discrimination using the training views. Our results indicate that, not only is the approach successful, but also that the routes that are learnt show many of the characteristics of the routes of desert ants. As such, we believe the model represents the only detailed and complete model of insect route guidance to date. What is more, the model provides a general demonstration that visually guided routes can be produced with parsimonious mechanisms that do not specify when or what to learn, nor separate routes into sequences of waypoints

    Naukratis: Part I., 1884-5

    Get PDF
    Book recording the excavations and findings at Naukratis.https://knowledge.e.southern.edu/kweeks_coll/1035/thumbnail.jp

    Random walk through fractal environments

    Full text link
    We analyze random walk through fractal environments, embedded in 3-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e. of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D of the fractal is less than 2, there is though always a finite rate of unaffected escape. Random walks through fractal sets with D less or equal 2 can thus be considered as defective Levy walks. The distribution of jump increments for D > 2 is decaying exponentially. The diffusive behavior of the random walk is analyzed in the frame of continuous time random walk, which we generalize to include the case of defective distributions of walk-increments. It is shown that the particles undergo anomalous, enhanced diffusion for D_F < 2, the diffusion is dominated by the finite escape rate. Diffusion for D_F > 2 is normal for large times, enhanced though for small and intermediate times. In particular, it follows that fractals generated by a particular class of self-organized criticality (SOC) models give rise to enhanced diffusion. The analytical results are illustrated by Monte-Carlo simulations.Comment: 22 pages, 16 figures; in press at Phys. Rev. E, 200
    • …
    corecore