187,135 research outputs found
Tests on Built-Up Airplane Struts Having Initial Tension in Outside Fibers
The conventional airplane strut fails by buckling. The first signs of failure usually are compression cracks on the concave side of bending. It would therefore appear that if an initial tension could be introduced in the outside fibers, this tension would have to be relieved before the compression load could make itself felt
Proposed Spontaneous Generation of Magnetic Fields by Curved Layers of a Chiral Superconductor
We demonstrate that two-dimensional chiral superconductors on curved surfaces
spontaneously develop magnetic flux. This geometric Meissner effect provides an
unequivocal signature of chiral super- conductivity, which could be observed in
layered materials under stress. We also employ the effect to explain some
puzzling questions related to the location of zero-energy Majorana modes
Mesospheric wave number spectra from Poker Flat MST radar measurements compared with gravity-wave model
The results of a comparison of mesospheric wind fluctuation spectra computed from radial wind velocity estimates made by the Poker Flat mesosphere-stratosphere-troposphere (MST) radar are compared with a gravity-wave model developed by VanZandt (1982, 1985). The principal conclusion of this comparison is that gravity waves can account for 80% of the mesospheric power spectral density
Interaction-induced chiral p_x \pm i p_y superfluid order of bosons in an optical lattice
The study of superconductivity with unconventional order is complicated in
condensed matter systems by their extensive complexity. Optical lattices with
their exceptional precision and control allow one to emulate superfluidity
avoiding many of the complications of condensed matter. A promising approach to
realize unconventional superfluid order is to employ orbital degrees of freedom
in higher Bloch bands. In recent work, indications were found that bosons
condensed in the second band of an optical chequerboard lattice might exhibit
p_x \pm i p_y order. Here we present experiments, which provide strong evidence
for the emergence of p_x \pm i p_y order driven by the interaction in the local
p-orbitals. We compare our observations with a multi-band Hubbard model and
find excellent quantitative agreement
The ultimate efficiency of photosensitive systems
These systems have in common two important but not independent features: they can produce a storable fuel, and they are sensitive only to radiant energy with a characteristic absorption spectrum. General analyses of the conversion efficiencies were made using the operational characteristics of each particular system. An efficiency analysis of a generalized system consisting of a blackbody source, a radiant energy converter having a threshold energy and operating temperature, and a reservoir is reported. This analysis is based upon the first and second laws of thermodynamics, and leads to a determination of the limiting or ultimate efficiency for an energy conversion system having a characteristic threshold
Thermodynamic limits for solar energy conversion by a quantum-thermal hybrid system
The limits are presented fo air mass 1.5 conditions. A maximum conversion efficiency of 74 percent is thermodynamically achievable for the quantum device operating at 3500 K and the heat engine in contact with a reservoir at 0 K. The efficiency drops to 56 percent for a cold reservoir at approximately room temperature conditions. Hybrid system efficiencies exceed 50 percent over receiver temperatures ranging from 1400 K to 4000 K, suggesting little benefit is gained in operating the system above 1400 K. The results are applied to a system consisting of a photovoltaic solar cell in series with a heat engine
Dynamical Coupled-Channels Effects on Pion Photoproduction
The electromagnetic pion production reactions are investigated within the
dynamical coupled-channels model developed in {\bf Physics Reports, 439, 193
(2007)}. The meson-baryon channels included in this study are , , , and the , and resonant components
of the channel. With the hadronic parameters of the model determined
in a recent study of scattering, we show that the pion photoproduction
data up to the second resonance region can be described to a very large extent
by only adjusting the bare helicity amplitudes, while the
non-resonant electromagnetic couplings are taken from previous works. It is
found that the coupled-channels effects can contribute about 10 - 20 % of the
production cross sections in the (1232) resonance region, and can
drastically change the magnitude and shape of the cross sections in the second
resonance region. The importance of the off-shell effects in a dynamical
approach is also demonstrated. The meson cloud effects as well as the
coupled-channels contributions to the form factors are found
to be mainly in the low region. For the magnetic M1
(1232) form factor, the results are close to that of the Sato-Lee Model.
Necessary improvements to the model and future developments are discussed.Comment: Corrected version. 14 pages, 10 figure
- …