40 research outputs found
Localization of complement factor H gene expression and protein distribution in the mouse outer retina.
To determine the localization of complement factor H (Cfh) mRNA and its protein in the mouse outer retina.Quantitative real-time PCR (qPCR) was used to determine the expression of Cfh and Cfh-related (Cfhr) transcripts in the RPE/choroid. In situ hybridization (ISH) was performed using the novel RNAscope 2.0 FFPE assay to localize the expression of Cfh mRNA in the mouse outer retina. Immunohistochemistry (IHC) was used to localize Cfh protein expression, and western blots were used to characterize CFH antibodies used for IHC.Cfh and Cfhr2 transcripts were detected in the mouse RPE/choroid using qPCR, while Cfhr1, Cfhr3, and Cfhrc (Gm4788) were not detected. ISH showed abundant Cfh mRNA in the RPE of all mouse strains (C57BL/6, BALB/c, 129/Sv) tested, with the exception of the Cfh(-/-) eye. Surprisingly, the Cfh protein was detected by immunohistochemistry in photoreceptors rather than in RPE cells. The specificity of the CFH antibodies was tested by western blotting. Our CFH antibodies recognized purified mouse Cfh protein, serum Cfh protein in wild-type C57BL/6, BALB/c, and 129/Sv, and showed an absence of the Cfh protein in the serum of Cfh(-/-) mice. Greatly reduced Cfh protein immunohistological signals in the Cfh(-/-) eyes also supported the specificity of the Cfh protein distribution results.Only Cfh and Cfhr2 genes are expressed in the mouse outer retina. Only Cfh mRNA was detected in the RPE, but no protein. We hypothesize that the steady-state concentration of Cfh protein is low in the cells due to secretion, and therefore is below the detection level for IHC
Intravitreal Administration of Human Bone Marrow CD34+ Stem Cells in a Murine Model of Retinal Degeneration.
PurposeIntravitreal murine lineage-negative bone marrow (BM) hematopoietic cells slow down retinal degeneration. Because human BM CD34+ hematopoietic cells are not precisely comparable to murine cells, this study examined the effect of intravitreal human BM CD34+ cells on the degenerating retina using a murine model.MethodsC3H/HeJrd1/rd1 mice, immunosuppressed systemically with tacrolimus and rapamycin, were injected intravitreally with PBS (n = 16) or CD34+ cells (n = 16) isolated from human BM using a magnetic cell sorter and labeled with enhanced green fluorescent protein (EGFP). After 1 and 4 weeks, the injected eyes were imaged with scanning laser ophthalmoscopy (SLO)/optical coherence tomography (OCT) and tested with electroretinography (ERG). Eyes were harvested after euthanasia for immunohistochemical and microarray analysis of the retina.ResultsIn vivo SLO fundus imaging visualized EGFP-labeled cells within the eyes following intravitreal injection. Simultaneous OCT analysis localized the EGFP-labeled cells on the retinal surface resulting in a saw-toothed appearance. Immunohistochemical analysis of the retina identified EGFP-labeled cells on the retinal surface and adjacent to ganglion cells. Electroretinography testing showed a flat signal both at 1 and 4 weeks following injection in all eyes. Microarray analysis of the retina following cell injection showed altered expression of more than 300 mouse genes, predominantly those regulating photoreceptor function and maintenance and apoptosis.ConclusionsIntravitreal human BM CD34+ cells rapidly home to the degenerating retinal surface. Although a functional benefit of this cell therapy was not seen on ERG in this rapidly progressive retinal degeneration model, molecular changes in the retina associated with CD34+ cell therapy suggest potential trophic regenerative effects that warrant further exploration
Potential therapeutic approaches for modulating expression and accumulation of defective lamin A in laminopathies and age-related diseases
MicroRNA Affymetrix microarray probe labeling from ocular fluids v1
Sample collection, isolation of miRNAs, and quality control Aqueous and vitreous humor, as well as plasma samples, have been collected from Diabetes mellitus (DM) and control patients during the standard-of-the-care eye surgery. Samples of 100-200ul were collected, aliquoted in 100ul aliquots, frozen on dry ice immediately and stored at -80oC. RNA was isolated using Exiqons’ modification of Qiagen’s microRNeasy kit. Quantification and quality check of isolated miRNAs was performed on BioAnalyzer (Agilent) with Small RNA microfluidics Chips. Affymetrix microarray probe labeling Probe labeling was done from 10 ng of aqueous, 20ng of vitreous and 20ng of plasma miRNA samples from a total of 24 aqueous, 24 vitreous and 25 plasma samples using FlashTag (Affymetrix) procedure. Labeled probes were hybridized to Affymetrix miRNA Array 3.0 in UC Davis Genome Center Microarray Core Facility using the standard procedure (Affymetrix, Santa Clara, CA). The total data set included 73 Affymetrix miRNA 3.0 microarrays. Upon scanning of the hybridized and washed Chips, data was obtained in a set of Affymetrix data files (.cel, .arr, .jpg). </p
