829 research outputs found

    Enhanced moments of Eu in single crystals of the metallic helical antiferromagnet EuCo2 yAs2

    Get PDF
    The compound EuCo{2-y}As2 with the tetragonal ThCr2Si2 structure is known to contain Eu{+2} ions with spin S = 7/2 that order below a temperature TN = 47 K into an antiferromagnetic (AFM) proper helical structure with the ordered moments aligned in the tetragonal ab plane, perpendicular to the helix axis along the c axis, with no contribution from the Co atoms. Here we carry out a detailed investigation of the properties of single crystals. Enhanced ordered and effective moments of the Eu spins are found in most of our crystals. Electronic structure calculations indicate that the enhanced moments arise from polarization of the d bands, as occurs in ferromagnetic Gd metal. Electrical resistivity measurements indicate metallic behavior. The low-field in-plane magnetic susceptibilities chi{ab}(T < TN) for several crystals are reported that are fitted well by unified molecular field theory (MFT), and the Eu-Eu exchange interactions Jij are extracted from the fits. High-field magnetization M data for magnetic fields H||ab reveal what appears to be a first-order spin-flop transition followed at higher field by a second-order metamagnetic transition of unknown origin, and then by another second-order transition to the paramagnetic (PM) state. For H||c, the magnetization shows only a second-order transition from the canted AFM to the PM state, as expected. The critical fields for the AFM to PM transition are in approximate agreement with the predictions of MFT. Heat capacity Cp measurements in zero and high H are reported. Phase diagrams for H||c and H||ab versus T are constructed from the high-field M(H,T) and Cp(H,T) measurements. The magnetic part Cmag(T, H = 0) of Cp(T, H = 0) is extracted and is fitted rather well below TN by MFT, although dynamic short-range AFM order is apparent in Cmag(T) up to about 70 K, where the molar entropy attains its high-T limit of R ln8.Comment: 29 pages, 30 figures including 62 subfigures, 8 tables, 84 reference

    Antiferromagnetism in semiconducting SrMn2Sb2 and BaMn2Sb2 single crystals

    Get PDF
    Crystals of SrMn 2 Sb 2 and BaMn 2 Sb 2 were grown using Sn flux and characterized by powder and single-crystal x-ray diffraction, respectively, and by single-crystal electrical resistivity ρ , heat capacity C p , and magnetic susceptibility χ measurements versus temperature T , and magnetization versus field M ( H ) isotherm measurements. SrMn 2 Sb 2 adopts the trigonal CaAl 2 Si 2 -type structure, whereas BaMn 2 Sb 2 crystallizes in the tetragonal ThCr 2 Si 2 -type structure. The ρ ( T ) data indicate semiconducting behaviors for both compounds with activation energies of ≳ 0.35 eV for SrMn 2 Sb 2 and 0.16 eV for BaMn 2 Sb 2 . The χ ( T ) and C p ( T ) data reveal antiferromagnetic (AFM) ordering at T N = 110 K for SrMn 2 Sb 2 and 450 K for BaMn 2 Sb 2 . The anisotropic χ ( T ≤ T N ) data also show that the ordered moments in SrMn 2 Sb 2 are aligned in the hexagonal a b plane, whereas the ordered moments in BaMn 2 Sb 2 are aligned collinearly along the tetragonal c axis. The a b -plane M ( H ) data for SrMn 2 Sb 2 exhibit a continuous metamagnetic transition at low fields 0 \u3c H ≲ 1 T, whereas BaMn 2 Sb 2 exhibits no metamagnetic transitions up to 5.5 T. The χ ( T ) and C p ( T ) data for both SrMn 2 Sb 2 and BaMn 2 Sb 2 indicate strong dynamic short-range AFM correlations above their respective T N up to at least 900 K within a local-moment picture, corresponding to quasi-two-dimensional magnetic behavior. The present results and a survey of the literature for Mn pnictides with the CaAl 2 Si 2 and ThCr 2 Si 2 crystal structures show that the T N values for the CaAl 2 Si 2 -type compounds are much smaller than those for the ThCr 2 Si 2 -type materials

    Termofizikalna i strukturalna studija IN 792-5A niklove superlegure

    Get PDF
    The presented paper deals with study of phase transformations temperatures of nickel based superalloy IN 792-5A with application of DTA – method and use of experimental laboratory system for simultaneous thermal analysis SETARAM Setsys 18TM. Samples taken from as-received state of superalloy were heated with controlled ramp rates (1, 5, 10 and 20 °C•min-1) and immediately after melting they were cooled with the same controlled ramp rate. The samples before and after DTA-analysis were also subjected to the phase analysis with use of scanning electron microscopy on the microprobe (JCXA 733) equipped with energy dispersive analyser EDAX (EDAM 3).Rad daje studiju temperature faznih transformacija niklove superslitine IN792-5A primjenom DTA metode te eksperimentalnog laboratorijskog sustava za simulaciju termalne analize SETARAM Setsys 18TM. Uzorci su uzeti iz početnog stanja legure i održavani definiranim brzinama (1, 5, 10 i 20 °C•min-1) i poslije ohlađeni kontroliranim brzinama. Uzorci su prije i poslije DTA analiza bili predmet fazne analize s primjenom skeninga elektronske mikroskopije (JCXA 733) dopunjeno s energi disperznom analizom EDAX (EDAM 3)

    Magnetic phase transitions in Eu(Co1-xNix)(2-y)As-2 single crystals

    Get PDF
    The effects of Ni doping in Eu(Co1-xNix)(2-y)As-2 single crystals with x = 0 to 1 grown out of self-flux are investigated via crystallographic, electronic transport, magnetic, and thermal measurements. All compositions adopt the body-centered-tetragonal ThCr2Si2 structure with space group I4/mmm. We also find 3%-4% of randomly distributed vacancies on the Co/Ni site. Anisotropic magnetic susceptibility chi(alpha) (alpha = ab, c) data versus temperature T show clear signatures of an antiferromagnetic (AFM) c-axis helix structure associated with the Eu+2 spins 7/2 for x = 0 and 1 as previously reported. The chi(alpha)(T) data for x = 0.03 and 0.10 suggest an anomalous 2q magnetic structure containing two helix axes along the c axis and in the ab plane, respectively, whereas for x = 0.75 and 0.82 a c-axis helix is inferred as previously found for x = 0 and 1. At intermediate compositions x = 0.2, 0.32, 0.42, 0.54, and 0.65, a magnetic structure with a large ferromagnetic (FM) c-axis component is found from magnetization versus field isotherms, suggested to be an incommensurate FM c-axis cone structure associated with the Eu spins, which consists of both AFM and FM components. In addition, the chi(T) and heat capacity C-p(T) data for x = 0.2-0.65 indicate the occurrence of itinerant FM order associated with the Co/Ni atoms with Curie temperatures from 60 to 25 K, respectively. Electrical resistivity rho(T) measurements indicate metallic character for all compositions with abrupt increases in slope on cooling below the Eu AFM transition temperatures. In addition to this panoply of magnetic transitions, Eu-151 Mossbauer measurements indicate that ordering of the Eu moments proceeds via an incommensurate sine amplitude-modulated structure with additional transition temperatures associated with this effect

    Cation-Poor Complex Metallic Alloys in Ba(Eu)–Au–Al(Ga) Systems: Identifying the Keys that Control Structural Arrangements and Atom Distributions at the Atomic Level

    Get PDF
    Four complex intermetallic compounds BaAu6±xGa6±y (x = 1, y = 0.9) (I), BaAu6±xAl6±y (x = 0.9, y = 0.6) (II), EuAu6.2Ga5.8 (III), and EuAu6.1Al5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn13-type structure (cF104–112, Fm3̅c), III (tP52, P4/nbm) is derived from the tetragonal Ce2Ni17Si9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupation by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution (“coloring scheme”). Chemical bonding analyses for two different “EuAu6Tr6” models reveal maximization of the number of heteroatomic Au–Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the “EuAu6Tr6” models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu6.2Ga5.8 (III) and EuAu6.1Al5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at TC = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. The effective moments of 8.3 μB/f.u., determined from Curie–Weiss fits, point to divalent oxidation states for europium in both III and IV
    corecore