11 research outputs found

    Cosmic Ray Extremely Distributed Observatory: a global network of detectors to probe contemporary physics mysteries

    Full text link
    In the past few years, cosmic-rays beyond the GZK cut-off (E>5×1019E > 5 \times 10^{19} eV) have been detected by leading collaborations such as Pierre Auger Observatory. Such observations raise many questions as to how such energies can be reached and what source can possibly produce them. Although at lower energies, mechanisms such as Fermi acceleration in supernovae front shocks seem to be favored, top-down scenarios have been proposed to explain the existence of ultra-high energy cosmic-rays: the decay of super-massive long-lived particles produced in the early Universe may yield to a flux of ultra-high energy photons. Such photons might be presently generating so called super-preshowers, an extended cosmic-ray shower with a spatial distribution that can be as wide as the Earth diameter. The Cosmic Ray Extremely Distributed Observatory (CREDO) mission is to find such events by means of a network of detectors spread around the globe. CREDO's strategy is to connect existing detectors and create a worldwide network of cosmic-ray observatories. Moreover, citizen-science constitutes an important pillar of our approach. By helping our algorithms to recognize detection patterns and by using smartphones as individual cosmic-ray detectors, non-scientists can participate in scientific discoveries and help unravel some of the deepest mysteries in physics.Comment: excited QCD Conference, CREDO Collaboration, 7 pages, 3 figure

    Recent developments in mobile cloud scheduling: state-of-the-art, challenges and perspectives

    No full text
    Cloud computing became recently one of the most popular multi-layer distributed computational and data processing environments with various types of services, distributed data storages and resources. With rapid development of mobile technologies, computational clouds have been transformed into the systems with dynamically changing topology and flexible infrastructure through integration with the mobile devices and mobile users as the whole system nodes and actors. The aim of this paper is to provide a comprehensive study and critical comparative analysis of the recent developments in the Mobile Clouds with a new energy optimization criterion scheduling
    corecore