21 research outputs found

    Cell biological consequences of Leigh disease.

    Get PDF
    Contains fulltext : 97704.pdf (publisher's version ) (Open Access

    Mining for mitochondrial mechanisms: Linking known syndromes to mitochondrial function

    No full text
    Contains fulltext : 193240.pdf (publisher's version ) (Closed access

    Gait analysis in a mouse model resembling Leigh disease

    No full text
    Leigh disease (LD) is one of the clinical phenotypes of mitochondrial OXPHOS disorders and also known as sub-acute necrotizing encephalomyelopathy. The disease has an incidence of 1 in 77,000 live births. Symptoms typically begin early in life and prognosis for LD patients is poor. Currently, no clinically effective treatments are available. Suitable animal and cellular models are necessary for the understanding of the neuropathology and the development of successful new therapeutic strategies. In this study we used the Ndufs4 knockout (Ndufs4(-/-)) mouse, a model of mitochondrial complex I deficiency. Ndusf4(-/-) mice exhibit progressive neurodegeneration, which closely resemble the human LD phenotype. When dissecting behavioral abnormalities in animal models it is of great importance to apply translational tools that are clinically relevant. To distinguish gait abnormalities in patients, simple walking tests can be assessed, but in animals this is not easy. This study is the first to demonstrate automated CatWalk gait analysis in the Ndufs4(-/-) mouse model. Marked differences were noted between Ndufs4(-/-) and control mice in dynamic, static, coordination and support parameters. Variation of walking speed was significantly increased in Ndufs4(-/-) mice, suggesting hampered and uncoordinated gait. Furthermore, decreased regularity index, increased base of support and changes in support were noted in the Ndufs4(-/-) mice. Here, we report the ability of the CatWalk system to sensitively assess gait abnormalities in Ndufs4(-/-) mice. This objective gait analysis can be of great value for intervention and drug efficacy studies in animal models for mitochondrial disease

    Increased mitochondrial ATP production capacity in brain of healthy mice and a mouse model of isolated complex I deficiency after isoflurane anesthesia

    Get PDF
    Contains fulltext : 167305.pdf (publisher's version ) (Open Access)We reported before that the minimal alveolar concentration (MAC) of isoflurane is decreased in complex I-deficient mice lacking the NDUFS4 subunit of the respiratory chain (RC) (1.55 and 0.81 % at postnatal (PN) 22-25 days and 1.68 and 0.65 % at PN 31-34 days for wildtype (WT) and CI-deficient KO, respectively). A more severe respiratory depression was caused by 1.0 MAC isoflurane in KO mice (respiratory rate values of 86 and 45 at PN 22-25 days and 69 and 29 at PN 31-34 days for anesthetized WT and KO, respectively). Here, we address the idea that isoflurane anesthesia causes a much larger decrease in brain mitochondrial ATP production in KO mice thus explaining their increased sensitivity to this anesthetic. Brains from WT and KO mice of the above study were removed immediately after MAC determination at PN 31-34 days and a mitochondria-enriched fraction was prepared. Aliquots were used for measurement of maximal ATP production in the presence of pyruvate, malate, ADP and creatine and, after freeze-thawing, the maximal activity of the individual RC complexes in the presence of complex-specific substrates. CI activity was dramatically decreased in KO, whereas ATP production was decreased by only 26 % (p < 0.05). The activities of CII, CIII, and CIV were the same for WT and KO. Isoflurane anesthesia decreased the activity of CI by 30 % (p < 0.001) in WT. In sharp contrast, it increased the activity of CII by 37 % (p < 0.001) and 50 % (p < 0.001) and that of CIII by 37 % (p < 0.001) and 40 % (p < 0.001) in WT and KO, respectively, whereas it tended to increase that of CIV in both WT and KO. Isoflurane anesthesia increased ATP production by 52 and 69 % in WT (p < 0.05) and KO (p < 0.01), respectively. Together these findings indicate that isoflurane anesthesia interferes positively rather than negatively with the ability of CI-deficient mice brain mitochondria to convert their main substrate pyruvate into ATP

    A randomised placebo-controlled, double-blind phase II study to explore the safety, efficacy, and pharmacokinetics of sonlicromanol in children with genetically confirmed mitochondrial disease and motor symptoms ("KHENERGYC")

    No full text
    BACKGROUND: METHODS: The KHENERGYC trial will be a phase II, randomised, double-blinded, placebo-controlled (DBPC), parallel-group study in the paediatric population (birth up to and including 17 years). The study will be recruiting 24 patients suffering from motor symptoms due to genetically confirmed PMD. The trial will be divided into two phases. The first phase of the study will be an adaptive pharmacokinetic (PK) study with four days of treatment, while the second phase will include randomisation of the participants and evaluating the efficacy and safety of sonlicromanol over 6 months. DISCUSSION: Effective novel therapies for treating PMDs in children are an unmet need. This study will assess the pharmacokinetics, efficacy, and safety of sonlicromanol in children with genetically confirmed PMDs, suffering from motor symptoms. TRIAL REGISTRATION: clinicaltrials.gov: NCT04846036, registered April 15, 2021. European Union Clinical Trial Register (EUDRACT number: 2020–003124-16), registered October 20, 2020. CCMO registration: NL75221.091.20, registered on October 7, 2020

    Clinical applications of high-density surface EMG: a systematic review.

    No full text
    Contains fulltext : 50824.pdf (publisher's version ) (Closed access)High density-surface EMG (HD-sEMG) is a non-invasive technique to measure electrical muscle activity with multiple (more than two) closely spaced electrodes overlying a restricted area of the skin. Besides temporal activity HD-sEMG also allows spatial EMG activity to be recorded, thus expanding the possibilities to detect new muscle characteristics. Especially muscle fiber conduction velocity (MFCV) measurements and the evaluation of single motor unit (MU) characteristics come into view. This systematic review of the literature evaluates the clinical applications of HD-sEMG. Although beyond the scope of the present review, the search yielded a large number of "non-clinical" papers demonstrating that a considarable amount of work has been done and that significant technical progress has been made concerning the feasibility and optimization of HD-sEMG techniques. Twenty-nine clinical studies and four reviews of clinical applications of HD-sEMG were considered. The clinical studies concerned muscle fatigue, motor neuron diseases (MND), neuropathies, myopathies (mainly in patients with channelopathies), spontaneous muscle activity and MU firing rates. In principle, HD-sEMG allows pathological changes at the MU level to be detected, especially changes in neurogenic disorders and channelopathies. We additionally discuss several bioengineering aspects and future clinical applications of the technique and provide recommendations for further development and implementation of HD-sEMG as a clinical diagnostic tool

    Clinical heterogeneity in patients with mutations in the NDUFS4 gene of mitochondrial complex I.

    No full text
    Item does not contain fulltextA comparison of the clinical presentation, disease course and results of laboratory and imaging studies of all patients so far published with a NDUFS4 mutation are presented. This reveals marked clinical heterogeneity, even in patients with the same genotype

    Human mitochondrial complex I deficiency: investigating transcriptional responses by microarray.

    No full text
    Item does not contain fulltextNADH:ubiquinone oxidoreductase (complex I) deficiency is one of the most frequently encountered defects of the mitochondrial energy generating system. A deficiency of this enzyme complex leads to a wide variety in clinical disease expression. The cell biological consequences of such mutations, however, are poorly understood. We investigated transcriptional responses in fibroblast cell lines harboring mutations in the five different nuclear DNA encoded subunits using a mitochondria-targeting microarray. Expression profiles of cell lines cultured under conditions that favor glycolytic metabolism were compared to profiles when cultured under conditions favoring oxidative metabolism. Approximately 60 genes displayed differential expression under these conditions in either all mutated cell lines or selected cell lines only. A marked induction of metallothioneins as well as ATP1G1 transcripts was detected in all patient cell lines. Transcriptional responses such as the induction of heat shock protein transcripts, decreased PDK1,BNIP3 and mitochondrial genome encoding gene transcripts occurred in selected patient cell lines. The observed transcript profile points to a common, putative defensive, response relating to oxidative stress. Although further investigations of other human OXPHOS system diseases is warranted, these results clearly underline that functional genomics holds for the study of inherited metabolic disease
    corecore