6 research outputs found

    Population Ecology and Genetics of the Marsh Fritillary Butterfly Euphydryas aurinia

    Get PDF
    The past two decades have witnessed an unprecedented decline in Lepidopteran species, with more than a third of the UK’s butterflies now either considered threatened, or already lost from the country. The vulnerable marsh fritillary, Euphydryas aurinia, after a long term loss in the UK of 73% in abundance, has become an almost iconic species as the target of many well-funded conservation projects across the UK. Despite extensive ecological studies, populations of E. aurinia are shown in Chapter 2 to still be declining in south-west UK even after recommended management strategies have been implemented. This necessitates the need for prompt research beyond that of management requirements and butterfly habitat preferences. In Chapter 3, microsatellite markers (EST-SSRs) were developed for E. aurinia and using these markers in Chapter 4, it is shown that E. aurinia populations in southern UK and Catalonia, Spain, are severely genetically differentiated at all geographical scales, and genetically depauperate, causing huge concerns for the conservation of this enigmatic and ecologically important species. Dispersal is fundamental to metapopulation existence and survival. Phosphoglucose isomerase (PGI – an enzyme in the glycolysis pathway) is a well-endorsed candidate gene for dispersal, extensively studied in the Glanville fritillary (Melitaea cinxia) and Orange Sulphur (Colias eurytheme). In Chapter 5, an analysis across 27 sites in the UK discovered six non-synonymous SNPs (single nucleotide polymorphisms) within PGI. A single charge-changing SNP of interest showed no evidence of balancing selection, contrary to findings in M. cinxia, instead appearing to be neutral when analysed alongside microsatellite markers developed in Chapter 3. No link was found between genotype and flight, morphology or population trend. These findings challenge the emerging perspective that PGI could be used as an adaptive molecular marker for arthropods. Wolbachia are endosymbiotic bacteria capable of dramatically altering the reproductive system of their host. In Chapter 6, a PCR-based diagnostic in conjunction with MLST (multi-locus sequence typing) identified 100% prevalence of a single strain of Wolbachia across all sampled E. aurinia populations in the UK. Total prevalence suggests that Wolbachia probably has little phenotypic impact on its host, but the potential impacts of this endosymbiont on uninfected populations should be considered during any management plans for the conservation of E. aurinia. Current management plans will need to incorporate all areas of research, from basic ecological requirements to molecular adaptation and unseen manipulators of host biology, to be able to fully and effectively conserve declining fragmented species.Biotechnology and Biological Sciences Research Council (BBSRC) with CASE partner Butterfly Conservation (BC

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Population ecology and genetics of the marsh fritillary butterfly Euphydryas aurinia

    No full text
    The past two decades have witnessed an unprecedented decline in Lepidopteran species, with more than a third of the UK’s butterflies now either considered threatened, or already lost from the country. The vulnerable marsh fritillary, Euphydryas aurinia, after a long term loss in the UK of 73% in abundance, has become an almost iconic species as the target of many well-funded conservation projects across the UK. Despite extensive ecological studies, populations of E. aurinia are shown in Chapter 2 to still be declining in south-west UK even after recommended management strategies have been implemented. This necessitates the need for prompt research beyond that of management requirements and butterfly habitat preferences. In Chapter 3, microsatellite markers (EST-SSRs) were developed for E. aurinia and using these markers in Chapter 4, it is shown that E. aurinia populations in southern UK and Catalonia, Spain, are severely genetically differentiated at all geographical scales, and genetically depauperate, causing huge concerns for the conservation of this enigmatic and ecologically important species. Dispersal is fundamental to metapopulation existence and survival. Phosphoglucose isomerase (PGI – an enzyme in the glycolysis pathway) is a well-endorsed candidate gene for dispersal, extensively studied in the Glanville fritillary (Melitaea cinxia) and Orange Sulphur (Colias eurytheme). In Chapter 5, an analysis across 27 sites in the UK discovered six non-synonymous SNPs (single nucleotide polymorphisms) within PGI. A single charge-changing SNP of interest showed no evidence of balancing selection, contrary to findings in M. cinxia, instead appearing to be neutral when analysed alongside microsatellite markers developed in Chapter 3. No link was found between genotype and flight, morphology or population trend. These findings challenge the emerging perspective that PGI could be used as an adaptive molecular marker for arthropods. Wolbachia are endosymbiotic bacteria capable of dramatically altering the reproductive system of their host. In Chapter 6, a PCR-based diagnostic in conjunction with MLST (multi-locus sequence typing) identified 100% prevalence of a single strain of Wolbachia across all sampled E. aurinia populations in the UK. Total prevalence suggests that Wolbachia probably has little phenotypic impact on its host, but the potential impacts of this endosymbiont on uninfected populations should be considered during any management plans for the conservation of E. aurinia. Current management plans will need to incorporate all areas of research, from basic ecological requirements to molecular adaptation and unseen manipulators of host biology, to be able to fully and effectively conserve declining fragmented species.EThOS - Electronic Theses Online ServiceBiotechnology and Biological Sciences Research Council (BBSRC) : Butterfly Conservation (BC)GBUnited Kingdo

    Effect of Antiplatelet Therapy on Survival and Organ Support–Free Days in Critically Ill Patients With COVID-19

    No full text
    International audienc
    corecore