26 research outputs found

    Association between physical functionality and falls risk in community-living older adults

    Get PDF
    Ageing-related declines in physiological attributes, such as muscle strength, can bring with them an increased risk of falls and subsequently greater risk of losing independence. These declines have substantial impact on an individual’s functional ability. However, the precise relationship between falls risk and physical functionality has not been evaluated. The aims of this study were to determine the association between falls risk and physical functionality using objective measures and to create an appropriate model to explain variance in falls risk. Thirty-two independently living adults aged 65–92 years completed the FallScreen, the Continuous-Scale Physical Functional Performance 10 (CS-PFP10) tests, and the 12-Item Short-Form Health Survey (SF-12). The relationships between falls risk, physical functionality, and age were investigated using correlational and multiple hierarchical regression analyses. Overall, total physical functionality accounted for 24% of variance in an individual’s falls risk while age explained a further 13%. The oldest-old age group had significantly greater falls risk and significantly lower physical functional performance. Mean scores for all measures showed that there were substantial (but not significant) differences between males and females. While increasing age is the strongest single predictor of increasing falls risk, poorer physical functionality was strongly, independently related to greater falls risk

    Making it real:Case-study exam model

    No full text

    The effect of high and low exercise intensity periods on a simple memory recognition test

    Get PDF
    AbstractPurposeThe purpose of this study was to investigate the effect of variable intensities on a simple memory recognition task during exercise.MethodsTwenty active participants took part in initial testing, a familiarization trial and then four 60 min cycling interventions in a randomized order. Interventions consisted of no exercise (control), constant exercise at 90% ventilatory threshold (constant) and 2 trials that initially mimicked the constant trial, but then included periods of high (∼90%VO2peak) and low intensities (∼50%VO2peak). Cardiorespiratory measures and capillary blood samples were taken throughout. A short tablet-based cognitive task was completed prior to and during (50 and 55 min into exercise) each intervention.ResultsThe exercise conditions facilitated response time (p = 0.009), although the extent of this effect was not as strong in the variable exercise conditions (p = 0.011–0.089). High intensity exercise periods resulted in some cognitive regression back towards control trial performance. Elevations in cardiorespiratory measures and periods of hypocapnia could not explain changes in cognitive performance.ConclusionChanges in cognitive performance with variations in exercise intensity are likely to have implications for sport and occupational settings. The timing of cognitive tests to exercise intensity changes as well as use of short cognitive assessments will be important for future work
    corecore