182 research outputs found

    Fabrication Development for SPT-SLIM, a Superconducting Spectrometer for Line Intensity Mapping

    Full text link
    Line Intensity Mapping (LIM) is a new observational technique that uses low-resolution observations of line emission to efficiently trace the large-scale structure of the Universe out to high redshift. Common mm/sub-mm emission lines are accessible from ground-based observatories, and the requirements on the detectors for LIM at mm-wavelengths are well matched to the capabilities of large-format arrays of superconducting sensors. We describe the development of an R = 300 on-chip superconducting filter-bank spectrometer covering the 120--180 GHz band optimized for future mm-LIM experiments, focusing on SPT-SLIM, a pathfinder LIM instrument for the South Pole Telescope. Radiation is coupled from the telescope optical system to the spectrometer chip via an array of feedhorn-coupled orthomode transducers. Superconducting microstrip transmission lines then carry the signal to an array of channelizing half-wavelength resonators, and the output of each spectral channel is sensed by a lumped element kinetic inductance detector (leKID). Key areas of development include incorporating new low-loss dielectrics to improve both the achievable spectral resolution and optical efficiency and development of a robust fabrication process to create a galvanic connection between ultra-pure superconducting thin-films to realize multi-material (hybrid) leKIDs. We provide an overview of the spectrometer design, fabrication process, and prototype devices.Comment: 7 pages, 7 figures, presented at 2022 Applied Superconductivity Conferenc

    SPT-3G: A Next-Generation Cosmic Microwave Background Polarization Experiment on the South Pole Telescope

    Full text link
    We describe the design of a new polarization sensitive receiver, SPT-3G, for the 10-meter South Pole Telescope (SPT). The SPT-3G receiver will deliver a factor of ~20 improvement in mapping speed over the current receiver, SPTpol. The sensitivity of the SPT-3G receiver will enable the advance from statistical detection of B-mode polarization anisotropy power to high signal-to-noise measurements of the individual modes, i.e., maps. This will lead to precise (~0.06 eV) constraints on the sum of neutrino masses with the potential to directly address the neutrino mass hierarchy. It will allow a separation of the lensing and inflationary B-mode power spectra, improving constraints on the amplitude and shape of the primordial signal, either through SPT-3G data alone or in combination with BICEP-2/KECK, which is observing the same area of sky. The measurement of small-scale temperature anisotropy will provide new constraints on the epoch of reionization. Additional science from the SPT-3G survey will be significantly enhanced by the synergy with the ongoing optical Dark Energy Survey (DES), including: a 1% constraint on the bias of optical tracers of large-scale structure, a measurement of the differential Doppler signal from pairs of galaxy clusters that will test General Relativity on ~200 Mpc scales, and improved cosmological constraints from the abundance of clusters of galaxies.Comment: 21 pages, 9 figures. To be published in Proceedings of SPIE Volume 9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014, conference 915

    Development and characterization of the readout system for POLARBEAR-2

    Full text link
    POLARBEAR-2 is a next-generation receiver for precision measurements of the polarization of the cosmic microwave background (Cosmic Microwave Background (CMB)). Scheduled to deploy in early 2015, it will observe alongside the existing POLARBEAR-1 receiver, on a new telescope in the Simons Array on Cerro Toco in the Atacama desert of Chile. For increased sensitivity, it will feature a larger area focal plane, with a total of 7,588 polarization sensitive antenna-coupled Transition Edge Sensor (TES) bolometers, with a design sensitivity of 4.1 uKrt(s). The focal plane will be cooled to 250 milliKelvin, and the bolometers will be read-out with 40x frequency domain multiplexing, with 36 optical bolometers on a single SQUID amplifier, along with 2 dark bolometers and 2 calibration resistors. To increase the multiplexing factor from 8x for POLARBEAR-1 to 40x for POLARBEAR-2 requires additional bandwidth for SQUID readout and well-defined frequency channel spacing. Extending to these higher frequencies requires new components and design for the LC filters which define channel spacing. The LC filters are cold resonant circuits with an inductor and capacitor in series with each bolometer, and stray inductance in the wiring and equivalent series resistance from the capacitors can affect bolometer operation. We present results from characterizing these new readout components. Integration of the readout system is being done first on a small scale, to ensure that the readout system does not affect bolometer sensitivity or stability, and to validate the overall system before expansion into the full receiver. We present the status of readout integration, and the initial results and status of components for the full array.Comment: Presented at SPIE Astronomical Telescopes and Instrumentation 2014: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. Published in Proceedings of SPIE Volume 915

    Detection of B-mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope

    Get PDF
    Gravitational lensing of the cosmic microwave background generates a curl pattern in the observed polarization. This "B-mode" signal provides a measure of the projected mass distribution over the entire observable Universe and also acts as a contaminant for the measurement of primordial gravity-wave signals. In this Letter we present the first detection of gravitational lensing B modes, using first-season data from the polarization-sensitive receiver on the South Pole Telescope (SPTpol). We construct a template for the lensing B-mode signal by combining E-mode polarization measured by SPTpol with estimates of the lensing potential from a Herschel-SPIRE map of the cosmic infrared background. We compare this template to the B modes measured directly by SPTpol, finding a non-zero correlation at 7.7 sigma significance. The correlation has an amplitude and scale-dependence consistent with theoretical expectations, is robust with respect to analysis choices, and constitutes the first measurement of a powerful cosmological observable.Comment: Two additional null tests, matches version published in PR

    CMB Polarization B-mode Delensing with SPTpol and Herschel

    Full text link
    We present a demonstration of delensing the observed cosmic microwave background (CMB) B-mode polarization anisotropy. This process of reducing the gravitational-lensing generated B-mode component will become increasingly important for improving searches for the B modes produced by primordial gravitational waves. In this work, we delens B-mode maps constructed from multi-frequency SPTpol observations of a 90 deg2^2 patch of sky by subtracting a B-mode template constructed from two inputs: SPTpol E-mode maps and a lensing potential map estimated from the Herschel\textit{Herschel} 500 μm500\,\mu m map of the CIB. We find that our delensing procedure reduces the measured B-mode power spectrum by 28% in the multipole range 300<ℓ<2300300 < \ell < 2300; this is shown to be consistent with expectations from theory and simulations and to be robust against systematics. The null hypothesis of no delensing is rejected at 6.9σ6.9 \sigma. Furthermore, we build and use a suite of realistic simulations to study the general properties of the delensing process and find that the delensing efficiency achieved in this work is limited primarily by the noise in the lensing potential map. We demonstrate the importance of including realistic experimental non-idealities in the delensing forecasts used to inform instrument and survey-strategy planning of upcoming lower-noise experiments, such as CMB-S4.Comment: 17 pages, 10 figures. Comments are welcome

    Measurements of the Temperature and E-Mode Polarization of the CMB from 500 Square Degrees of SPTpol Data

    Get PDF
    We present measurements of the EE-mode polarization angular auto-power spectrum (EEEE) and temperature-EE-mode cross-power spectrum (TETE) of the cosmic microwave background (CMB) using 150 GHz data from three seasons of SPTpol observations. We report the power spectra over the spherical harmonic multipole range 50<ℓ≤800050 < \ell \leq 8000, and detect nine acoustic peaks in the EEEE spectrum with high signal-to-noise ratio. These measurements are the most sensitive to date of the EEEE and TETE power spectra at ℓ>1050\ell > 1050 and ℓ>1475\ell > 1475, respectively. The observations cover 500 deg2^2, a fivefold increase in area compared to previous SPTpol analyses, which increases our sensitivity to the photon diffusion damping tail of the CMB power spectra enabling tighter constraints on \LCDM model extensions. After masking all sources with unpolarized flux >50>50 mJy we place a 95% confidence upper limit on residual polarized point-source power of Dℓ=ℓ(ℓ+1)Cℓ/2π<0.107 μK2D_\ell = \ell(\ell+1)C_\ell/2\pi <0.107\,\mu{\rm K}^2 at ℓ=3000\ell=3000, suggesting that the EEEE damping tail dominates foregrounds to at least ℓ=4050\ell = 4050 with modest source masking. We find that the SPTpol dataset is in mild tension with the ΛCDM\Lambda CDM model (2.1 σ2.1\,\sigma), and different data splits prefer parameter values that differ at the ∼1 σ\sim 1\,\sigma level. When fitting SPTpol data at ℓ<1000\ell < 1000 we find cosmological parameter constraints consistent with those for PlanckPlanck temperature. Including SPTpol data at ℓ>1000\ell > 1000 results in a preference for a higher value of the expansion rate (H_0 = 71.3 \pm 2.1\,\mbox{km}\,s^{-1}\mbox{Mpc}^{-1} ) and a lower value for present-day density fluctuations (σ8=0.77±0.02\sigma_8 = 0.77 \pm 0.02).Comment: Updated to match version accepted to ApJ. 34 pages, 17 figures, 6 table

    A Measurement of the Cosmic Microwave Background Gravitational Lensing Potential from 100 Square Degrees of SPTpol Data

    Get PDF
    We present a measurement of the cosmic microwave background (CMB) gravitational lensing potential using data from the first two seasons of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (SPT). The observations used in this work cover 100 deg2^2 of sky with arcminute resolution at 150 GHz. Using a quadratic estimator, we make maps of the CMB lensing potential from combinations of CMB temperature and polarization maps. We combine these lensing potential maps to form a minimum-variance (MV) map. The lensing potential is measured with a signal-to-noise ratio of greater than one for angular multipoles between 100<L<250100< L <250. This is the highest signal-to-noise mass map made from the CMB to date and will be powerful in cross-correlation with other tracers of large-scale structure. We calculate the power spectrum of the lensing potential for each estimator, and we report the value of the MV power spectrum between 100<L<2000100< L <2000 as our primary result. We constrain the ratio of the spectrum to a fiducial Λ\LambdaCDM model to be AMV=0.92±0.14 (Stat.)±0.08 (Sys.)A_{\rm MV}=0.92 \pm 0.14 {\rm\, (Stat.)} \pm 0.08 {\rm\, (Sys.)}. Restricting ourselves to polarized data only, we find APOL=0.92±0.24 (Stat.)±0.11 (Sys.)A_{\rm POL}=0.92 \pm 0.24 {\rm\, (Stat.)} \pm 0.11 {\rm\, (Sys.)}. This measurement rejects the hypothesis of no lensing at 5.9σ5.9 \sigma using polarization data alone, and at 14σ14 \sigma using both temperature and polarization data.Comment: 16 pages, 8 figure

    Measurements of Sub-degree B-mode Polarization in the Cosmic Microwave Background from 100 Square Degrees of SPTpol Data

    Get PDF
    We present a measurement of the BB-mode polarization power spectrum (the BBBB spectrum) from 100 deg2\mathrm{deg}^2 of sky observed with SPTpol, a polarization-sensitive receiver currently installed on the South Pole Telescope. The observations used in this work were taken during 2012 and early 2013 and include data in spectral bands centered at 95 and 150 GHz. We report the BBBB spectrum in five bins in multipole space, spanning the range 300≤ℓ≤2300300 \le \ell \le 2300, and for three spectral combinations: 95 GHz ×\times 95 GHz, 95 GHz ×\times 150 GHz, and 150 GHz ×\times 150 GHz. We subtract small (<0.5σ< 0.5 \sigma in units of statistical uncertainty) biases from these spectra and account for the uncertainty in those biases. The resulting power spectra are inconsistent with zero power but consistent with predictions for the BBBB spectrum arising from the gravitational lensing of EE-mode polarization. If we assume no other source of BBBB power besides lensed BB modes, we determine a preference for lensed BB modes of 4.9σ4.9 \sigma. After marginalizing over tensor power and foregrounds, namely polarized emission from galactic dust and extragalactic sources, this significance is 4.3σ4.3 \sigma. Fitting for a single parameter, AlensA_\mathrm{lens}, that multiplies the predicted lensed BB-mode spectrum, and marginalizing over tensor power and foregrounds, we find Alens=1.08±0.26A_\mathrm{lens} = 1.08 \pm 0.26, indicating that our measured spectra are consistent with the signal expected from gravitational lensing. The data presented here provide the best measurement to date of the BB-mode power spectrum on these angular scales.Comment: 21 pages, 4 figure

    South Pole Telescope Software Systems: Control, Monitoring, and Data Acquisition

    Full text link
    We present the software system used to control and operate the South Pole Telescope. The South Pole Telescope is a 10-meter millimeter-wavelength telescope designed to measure anisotropies in the cosmic microwave background (CMB) at arcminute angular resolution. In the austral summer of 2011/12, the SPT was equipped with a new polarization-sensitive camera, which consists of 1536 transition-edge sensor bolometers. The bolometers are read out using 36 independent digital frequency multiplexing (\dfmux) readout boards, each with its own embedded processors. These autonomous boards control and read out data from the focal plane with on-board software and firmware. An overall control software system running on a separate control computer controls the \dfmux boards, the cryostat and all other aspects of telescope operation. This control software collects and monitors data in real-time, and stores the data to disk for transfer to the United States for analysis
    • …
    corecore