53 research outputs found

    Anti-Cancer Effect of HIV-1 Viral Protein R on Doxorubicin Resistant Neuroblastoma

    Get PDF
    Several unique biological features of HIV-1 Vpr make it a potentially powerful agent for anti-cancer therapy. First, Vpr inhibits cell proliferation by induction of cell cycle G2 arrest. Second, it induces apoptosis through multiple mechanisms, which could be significant as it may be able to overcome apoptotic resistance exhibited by many cancerous cells, and, finally, Vpr selectively kills fast growing cells in a p53-independent manner. To demonstrate the potential utility of Vpr as an anti-cancer agent, we carried out proof-of-concept studies in vitro and in vivo. Results of our preliminary studies demonstrated that Vpr induces cell cycle G2 arrest and apoptosis in a variety of cancer types. Moreover, the same Vpr effects could also be detected in some cancer cells that are resistant to anti-cancer drugs such as doxorubicin (DOX). To further illustrate the potential value of Vpr in tumor growth inhibition, we adopted a DOX-resistant neuroblastoma model by injecting SK-N-SH cells into C57BL/6N and C57BL/6J-scid/scid mice. We hypothesized that Vpr is able to block cell proliferation and induce apoptosis regardless of the drug resistance status of the tumors. Indeed, production of Vpr via adenoviral delivery to neuroblastoma cells caused G2 arrest and apoptosis in both drug naïve and DOX-resistant cells. In addition, pre-infection or intratumoral injection of vpr-expressing adenoviral particles into neuroblastoma tumors in SCID mice markedly inhibited tumor growth. Therefore, Vpr could possibly be used as a supplemental viral therapeutic agent for selective inhibition of tumor growth in anti-cancer therapy especially when other therapies stop working

    Oncogene advance online publication

    No full text
    The p53 gene is often mutated during cancer development. Frequency and functional consequences of these mutations vary in different tumor types. We analysed conformation and temperature dependency of 23 partially inactivating temperature-dependent (td) p53 mutants derived from various human tumors in yeast. We found considerable differences in transactivation capabilities and discriminative character of various p53 mutants. No correlations in transactivation rates and conformations of the td p53 proteins were detected. Amifostine-induced p53 reactivation occurred only in 13 of 23 td mutants, and this effect was temperature dependent and responsive element specific. The most of the p53 mutations (10/13) reactivated by amifostine were located in the part of the p53 gene coding for hydrophobic b-sandwich structure of the DNA-binding domain
    • …
    corecore