3 research outputs found

    BrainFrame: A node-level heterogeneous accelerator platform for neuron simulations

    Get PDF
    Objective. The advent of high-performance computing (HPC) in recent years has led to its increasing use in brain studies through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a homogeneous acceleration platform to effectively address the complete array of modeling requirements. Approach. In this paper we propose and build BrainFrame, a heterogeneous acceleration platform that incorporates three distinct acceleration technologies, an Intel Xeon-Phi CPU

    FlexHH: A Flexible Hardware Library for Hodgkin-Huxley-Based Neural Simulations

    Get PDF
    The Hodgkin-Huxley (HH) neuron is one of the most biophysically-meaningful models used in computational neuroscience today. Ironically, the model's high experimental value is offset by its disproportional computational complexity. To such an extent that neuroscientists have either resorted to simpler models, losing precious neuron detail, or to using high-performance computing systems, to gain acceleration, for complex models. However, multicore/multinode CPU-based systems have proven too slow while FPGA-based ones have proven too time-consuming to (re)deploy to. Clearly, a solution that bridges user friendliness and high speedups is necessary. This paper presents flexHH, a flexible FPGA library implementing five popular, highly
    corecore