1,508 research outputs found

    Effects of environmental changes on marsh vegetation with special reference to salinity

    Get PDF
    A literature survey primarily concerned with brackish and salt marshes located along the eastern coast of North America and the Gulf Coast was presented. The review concentrated upon the vegetation of the marshes, particularly in regard to distribution, composition, succession, and productivity. Special efforts were made to include major works concerned with the Louisiana and Mississipi coastal marshes. It appears that spring to early summer (weeks 18-34 of the year; April - mid-July) is the best period of time to categorize the communities. It is during this time of the year that the communities appear most stable in regard to species composition. This allows a strong correlation to be drawn between the salinity of the region and the dominant species of the community. As such, this would seem to be best period in which to sample the marsh via air or land for differences in vegetation and salinity

    Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 parsecs: The Northern Sample I

    Full text link
    We have embarked on a project, under the aegis of the Nearby Stars (NStars)/ Space Interferometry Mission Preparatory Science Program to obtain spectra, spectral types, and, where feasible, basic physical parameters for the 3600 dwarf and giant stars earlier than M0 within 40 parsecs of the sun. In this paper we report on the results of this project for the first 664 stars in the northern hemisphere. These results include precise, homogeneous spectral types, basic physical parameters (including the effective temperature, surface gravity and the overall metallicity, [M/H]) and measures of the chromospheric activity of our program stars. Observed and derived data presented in this paper are also available on the project's website at http://stellar.phys.appstate.edu/

    Convection, Thermal Bifurcation, and the Colors of A stars

    Get PDF
    Broad-band ultraviolet photometry from the TD-1 satellite and low dispersion spectra from the short wavelength camera of IUE have been used to investigate a long-standing proposal of Bohm-Vitense that the normal main sequence A- and early-F stars may divide into two different temperature sequences: (1) a high temperature branch (and plateau) comprised of slowly rotating convective stars, and (2) a low temperature branch populated by rapidly rotating radiative stars. We find no evidence from either dataset to support such a claim, or to confirm the existence of an "A-star gap" in the B-V color range 0.22 <= B-V <= 0.28 due to the sudden onset of convection. We do observe, nonetheless, a large scatter in the 1800--2000 A colors of the A-F stars, which amounts to ~0.65 mags at a given B-V color index. The scatter is not caused by interstellar or circumstellar reddening. A convincing case can also be made against binarity and intrinsic variability due to pulsations of delta Sct origin. We find no correlation with established chromospheric and coronal proxies of convection, and thus no demonstrable link to the possible onset of convection among the A-F stars. The scatter is not instrumental. Approximately 0.4 mags of the scatter is shown to arise from individual differences in surface gravity as well as a moderate spread (factor of ~3) in heavy metal abundance and UV line blanketing. A dispersion of ~0.25 mags remains, which has no clear and obvious explanation. The most likely cause, we believe, is a residual imprecision in our correction for the spread in metal abundances. However, the existing data do not rule out possible contributions from intrinsic stellar variability or from differential UV line blanketing effects owing to a dispersion in microturbulent velocity.Comment: 40 pages, 14 figures, 1 table, AAS LaTex, to appear in The Astrophysical Journa

    Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes

    Get PDF
    Hydrogen adsorption on crystalline ropes of carbon single-walled nanotubes (SWNT) was found to exceed 8 wt.%, which is the highest capacity of any carbon material. Hydrogen is first adsorbed on the outer surfaces of the crystalline ropes. At pressures higher than about 40 bar at 80 K, however, a phase transition occurs where there is a separation of the individual SWNTs, and hydrogen is physisorbed on their exposed surfaces. The pressure of this phase transition provides a tube-tube cohesive energy for much of the material of 5 meV/C atom. This small cohesive energy is affected strongly by the quality of crystalline order in the ropes

    Population Synthesis in the Blue IV: Accurate Model Predictions for Lick Indices and UBV Colors in Single Stellar Populations

    Get PDF
    [Abridged] We present new model predictions for 16 Lick absorption line indices from Hdelta through Fe5335, and UBV colors for single stellar populations (SPs) with ages ranging between 1 and 15 Gyr, [Fe/H] ranging from -1.3 to +0.3, and variable abundance ratios. We develop a method to estimate mean ages and abundances of Fe, C, N, Mg, and Ca that explores the sensitivity of the various indices to those parameters. When applied to high-S/N Galactic cluster data, the models match the clusters' elemental abundances and ages with high precision. Analyzing stacked SDSS spectra of early-type galaxies brighter than Lstar, we find mean luminosity-weighted ages of the order of ~ 8 Gyr and iron abundances slightly below solar. Abundance ratios, [X/Fe], are higher than solar, and correlate positively with galaxy luminosity. Nitrogen is the element whose abundance correlates the most strongly with luminosity, which seems to indicate secondary enrichment. This result may impose a lower limit of 50-200 Myr to the time-scale of star formation in early-type galaxies. Unlike in the case of clusters, in galaxies bluer Balmer lines yield younger ages than Hbeta. This age discrepancy is stronger for lower luminosity galaxies. We examine four scenarios to explain this trend. The most likely is the presence of small amounts of a young/intermediate-age SP component. Two-component models provide a better match to the data when the mass fraction of the young component is a few %. This result implies that star formation has been extended in early-type galaxies, and more so in less massive galaxies, lending support to the ``downsizing'' scenario. It also implies that SP synthesis models are capable of constraining not only the mean ages of SPs in galaxies, but also their age spread.Comment: To appear in the Astrophysical Journal Supplement Series. 55 Pages, using emulateapj5.sty. Full version, containing all (enlarged) figures can be found at http://www.astro.virginia.edu/~rps7v/Models/ms.pdf . A number of useful tables in the Appendix can be obtained in advance of publication by request to the autho

    Cooler and bigger than thought? Planetary host stellar parameters from the InfraRed Flux Method

    Full text link
    Effective temperatures and radii for 92 planet-hosting stars as determined from the InfraRed Flux Method (IRFM) are presented and compared with those given by other authors using different approaches. The IRFM temperatures we have derived are systematically lower than those determined from the spectroscopic condition of excitation equilibrium, the mean difference being as large as 110 K. They are, however, consistent with previous IRFM studies and with the colors derived from Kurucz and MARCS model atmospheres. Comparison with direct measurements of stellar diameters for 7 dwarf stars, which approximately cover the range of temperatures of the planet-hosting stars, suggest that the IRFM radii and temperatures are reliable in an absolute scale. A better understanding of the fundamental properties of the stars with planets will be achieved once this discrepancy between the IRFM and the spectroscopic temperature scales is resolved.Comment: 15 pages, 4 figures. Accepted for publication in Ap

    Spitzer 3.6 micron and 4.5 micron full-orbit lightcurves of WASP-18

    Get PDF
    We present new lightcurves of the massive hot Jupiter system WASP-18 obtained with the Spitzer spacecraft covering the entire orbit at 3.6 micron and 4.5 micron. These lightcurves are used to measure the amplitude, shape and phase of the thermal phase effect for WASP-18b. We find that our results for the thermal phase effect are limited to an accuracy of about 0.01% by systematic noise sources of unknown origin. At this level of accuracy we find that the thermal phase effect has a peak-to-peak amplitude approximately equal to the secondary eclipse depth, has a sinusoidal shape and that the maximum brightness occurs at the same phase as mid-occultation to within about 5 degrees at 3.6 micron and to within about 10 degrees at 4.5 micron. The shape and amplitude of the thermal phase curve imply very low levels of heat redistribution within the atmosphere of the planet. We also perform a separate analysis to determine the system geometry by fitting a lightcurve model to the data covering the occultation and the transit. The secondary eclipse depths we measure at 3.6 micron and 4.5 micron are in good agreement with previous measurements and imply a very low albedo for WASP-18b. The parameters of the system (masses, radii, etc.) derived from our analysis are in also good agreement with those from previous studies, but with improved precision. We use new high-resolution imaging and published limits on the rate of change of the mean radial velocity to check for the presence of any faint companion stars that may affect our results. We find that there is unlikely to be any significant contribution to the flux at Spitzer wavelengths from a stellar companion to WASP-18. We find that there is no evidence for variations in the times of eclipse from a linear ephemeris greater than about 100 seconds over 3 years.Comment: 17 pages, 10 figures. Accpeted for publication in MNRA
    corecore