5 research outputs found

    APOA5 Q97X Mutation Identified through homozygosity mapping causes severe hypertriglyceridemia in a Chilean consanguineous family

    Get PDF
    BACKGROUND: Severe hypertriglyceridemia (HTG) has been linked to defects in LPL, APOC2, APOA5, LMF1 and GBIHBP1 genes. However, a number of severe HTG cases are probably caused by as yet unidentified mutations. Very high triglyceride plasma levels (>112 mmol/L at diagnosis) were found in two sisters of a Chilean consanguineous family, which is strongly suggestive of a recessive highly penetrant mutation. The aim of this study was to determine the genetic locus responsible for the severe HTG in this family. METHODS: We carried out a genome-wide linkage study with nearly 300,000 biallelic markers (Illumina Human CytoSNP-12 panel). Using the homozygosity mapping strategy, we searched for chromosome regions with excess of homozygous genotypes in the affected cases compared to non-affected relatives. RESULTS: A large homozygous segment was found in the long arm of chromosome 11, with more than 2,500 consecutive homozygous SNP shared by the proband with her affected sister, and containing the APOA5/A4/C3/A1 cluster. Direct sequencing of the APOA5 gene revealed a known homozygous nonsense Q97X mutation (p.Gln97Ter) found in both affected sisters but not in non-affected relatives nor in a sample of unrelated controls. CONCLUSION: The Q97X mutation of the APOA5 gene in homozygous status is responsible for the severe hypertriglyceridemia in this family. We have shown that homozygosity mapping correctly pinpointed the genomic region containing the gene responsible for severe hypertriglyceridemia in this consanguineous Chilean famil

    Novel splice-affecting variants in CYP27A1 gene in two Chilean patients with Cerebrotendinous Xanthomatosis

    Get PDF
    Cerebrotendinous Xanthomatosis (CTX), a rare lipid storage disorder, is caused by recessive loss-of-function mutations of the 27-sterol hydroxylase (CYP27A1), producing an alteration of the synthesis of bile acids, with an accumulation of cholestanol. Clinical characteristics include juvenile cataracts, diarrhea, tendon xanthomas, cognitive impairment and other neurological manifestations. Early diagnosis is critical, because treatment with chenodeoxycholic acid may prevent neurological damage. We studied the CYP27A1 gene in two Chilean CTX patients by sequencing its nine exons, exon-intron boundaries, and cDNA from peripheral blood mononuclear cells. Patient 1 is a compound heterozygote for the novel substitution c.256-1G > T that causes exon 2 skipping, leading to a premature stop codon in exon 3, and for the previously-known pathogenic mutation c.1183C > T (p.Arg395Cys). Patient 2 is homozygous for the novel mutation c.1185-1G > A that causes exon 7 skipping and the generation of a premature stop codon in exon 8, leading to the loss of the crucial adrenoxin binding domain of CYP27A1

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7Ă—10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4Ă—10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4Ă—10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Novel splice-affecting variants in CYP27A1 gene in two Chilean patients with Cerebrotendinous Xanthomatosis

    No full text
    Cerebrotendinous Xanthomatosis (CTX), a rare lipid storage disorder, is caused by recessive loss-of-function mutations of the 27-sterol hydroxylase (CYP27A1), producing an alteration of the synthesis of bile acids, with an accumulation of cholestanol. Clinical characteristics include juvenile cataracts, diarrhea, tendon xanthomas, cognitive impairment and other neurological manifestations. Early diagnosis is critical, because treatment with chenodeoxycholic acid may prevent neurological damage. We studied the CYP27A1 gene in two Chilean CTX patients by sequencing its nine exons, exon-intron boundaries, and cDNA from peripheral blood mononuclear cells. Patient 1 is a compound heterozygote for the novel substitution c.256-1G > T that causes exon 2 skipping, leading to a premature stop codon in exon 3, and for the previously-known pathogenic mutation c.1183C > T (p.Arg395Cys). Patient 2 is homozygous for the novel mutation c.1185-1G > A that causes exon 7 skipping and the generation of a premature stop codon in exon 8, leading to the loss of the crucial adrenoxin binding domain of CYP27A1

    Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers

    No full text
    Two single nucleotide polymorphisms (SNPs) at 6q25.1, near the ESR1 gene, have been implicated in the susceptibility to breast cancer for Asian (rs2046210) and European women (rs9397435). A genome-wide association study in Europeans identified two further breast cancer susceptibility variants: rs11249433 at 1p11.2 and rs999737 in RAD51L1 at 14q24.1. Although previously identified breast cancer susceptibility variants have been shown to be associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers, the involvement of these SNPs to breast cancer susceptibility in mutation carriers is currently unknown. To address this, we genotyped these SNPs in BRCA1 and BRCA2 mutation carriers from 42 studies from the Consortium of Investigators of Modifiers of BRCA1/2. In the analysis of 14 123 BRCA1 and 8053 BRCA2 mutation carriers of European ancestry, the 6q25.1 SNPs (r2= 0.14) were independently associated with the risk of breast cancer for BRCA1 mutation carriers [hazard ratio (HR) = 1.17, 95% confidence interval (CI): 1.11-1.23, P-trend = 4.5 Ă— 10-9for rs2046210; HR = 1.28, 95% CI: 1.18-1.40, P-trend = 1.3 Ă— 10-8for rs9397435], but only rs9397435 was associated with the risk for BRCA2 carriers (HR = 1.14, 95% CI: 1.01-1.28, P-trend = 0.031). SNP rs11249433 (1p11.2) was associated with the risk of breast cancer for BRCA2 mutation carriers (HR = 1.09, 95% CI: 1.02-1.17, P-trend = 0.015), but was not associated with breast cancer risk for BRCA1 mutation carriers (HR = 0.97, 95% CI: 0.92-1.02, P-trend = 0.20). SNP rs999737 (RAD51L1) was not associated with breast cancer risk for either BRCA1 or BRCA2 mutation carriers (P-trend = 0.27 and 0.30, respectively). The identification of SNPs at 6q25.1 associated with breast cancer risk for BRCA1 mutation carriers will lead to a better understanding of the biology of tumour development in these women
    corecore