208 research outputs found

    Buckyball Nucleation of HiPco Tubes

    Get PDF
    The purpose of this innovation is to enhance nucleation of single-wall nanotubes (SWNTs) in the HiPco process, selectively producing 10,10 tubes, something which until now has not been thought possible. This is accomplished by injecting C60, or a derivative of C60, solubilized in supercritical CO2 together with a transition metal carboneal cocatalyst into the HiPco reactor. This is a variant on the supercritical disclosure. C60 has never been used to nucleate carbon nanotubes in the gas phase. C60 itself may not have adequate solubility in supercritical CO2. However, fluorinated C60, e.g., C60F36, is easy to make cheaply and should have much enhanced solubility

    Three Dimensionally Interlinked, Dense, Solid Form of Single-Walled CNT Ropes

    Get PDF
    A 3D networked, dense form of single-walled carbon nanotubes (SWNT) has been made through isotropic shrinking of a gel-like SWNT-water paste by very slow evaporation. Approximately 35 g of Raw HiPco nanotubes were cleaned by the method of soft baking (250 C for 15 hours in air saturated with water vapor) in a glass beaker followed by leaching with concentrated hydrochloric acid. Typically, one liter of concentrated hydrochloric acid was added to the soft-baked voluminous mass in the same large beaker, and allowed to digest at room temperature with stirring overnight. The acid-digested SWNT slurry was filtered through a large porcelain Buchner funnel under atmospheric pressure. The slurry was continuously flushed, while still in the funnel, with a very slow but steady stream of deionized water employing a peristaltic pump. This process, referred to as gwashing, h continued until the filtrate water dripping from the Buchner funnel was clear, colorless, and neutral to a pH paper. This took about 15 liters of water to flow through the slurry over a day. At this point, the water pump was stopped and the SWNT-water slurry was allowed to drain the excess water for about 10 hours. The resulting thick paste of SWNT-neutral water was transferred to a beaker. The beaker was covered with aluminum foil with few holes and allowed to dry very slowly in a hood at room temperature. In about eight weeks, the sample gradually dried isotropically to a cylindrical dense mass referred to as a carbon nanotube block (CNB). There was no carbonaceous matter sticking to any of the glass surface where the SWNT-water paste made contact. The approximate dimensions of the cylindrical SWNT block that weighed 28 g were 1.5 in. (.3.8 cm) in diameter and 1.25 in. (.3.2 cm) in height. The bottom portion of the cylinder that was in contact with the beaker surface was slightly wider, indicating some resistance to shrinking. The cylindrical mass also consisted of several pores. The cylindrical mass was very tough and could not be broken with a small hammer using considerable force. The mass of the solid could be polished over a fine grain emery paper or even a smooth, stainless steel surface indicative of alignment at finer levels

    Effects of Carbonyl Bond and Metal Cluster Dissociation and Evaporation Rates on Predictions of Nanotube Production in HiPco

    Get PDF
    The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNT) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the co-formation of CO2. It is shown that the production of CO2 is significantly greater for FeCO due to its lower bond energy as compared with that ofNiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence

    Chemical doping of individual semiconducting carbon-nanotube ropes

    Get PDF
    We report the effects of potassium doping on the conductance of individual semiconducting single-walled carbon nanotube ropes. We are able to control the level of doping by reversibly intercalating and de-intercalating potassium. Potassium doping changes the carriers in the ropes from holes to electrons. Typical values for the carrier density are found to be ∼100–1000 electrons/μm. The effective mobility for the electrons is μeff∼20–60 cm2 V-1 s-1, a value similar to that reported for the hole effective mobility in nanotubes [R. Martel et al., Appl. Phys. Lett. 73, 2447 (1998)]

    Iron Catalyst Chemistry in High Pressure Carbon Monoxide Nanotube Reactor

    Get PDF
    The high-pressure carbon monoxide (HiPco) technique for producing single wall carbon nanotubes (SWNT) is analyzed using a chemical reaction model coupled with properties calculated along streamlines. Streamline properties for mixing jets are calculated by the FLUENT code using the k-e turbulent model for pure carbon monixide. The HiPco process introduces cold iron pentacarbonyl diluted in CO, or alternatively nitrogen, at high pressure, ca. 30 atmospheres into a conical mixing zone. Hot CO is also introduced via three jets at angles with respect to the axis of the reactor. Hot CO decomposes the Fe(CO)5 to release atomic Fe. Cluster reaction rates are from Krestinin, et aI., based on shock tube measurements. Another model is from classical cluster theory given by Girshick's team. The calculations are performed on streamlines that assume that a cold mixture of Fe(CO)5 in CO is introduced along the reactor axis. Then iron forms clusters that catalyze the formation of SWNTs from the Boudouard reaction on Fe-containing clusters by reaction with CO. To simulate the chemical process along streamlines that were calculated by the fluid dynamics code FLUENT, a time history of temperature and dilution are determined along streamlines. Alternative catalyst injection schemes are also evaluated

    Novel Materials Containing Single-Wall Carbon Nanotubes Wrapped in Polymer Molecules

    Get PDF
    In this design, single-wall carbon nanotubes (SWNTs) have been coated in polymer molecules to create a new type of material that has low electrical conductivity, but still contains individual nanotubes, and small ropes of individual nanotubes, which are themselves good electrical conductors and serve as small conducting rods immersed in an electrically insulating matrix. The polymer is attached through weak chemical forces that are primarily non-covalent in nature, caused primarily through polarization rather than the sharing of valence electrons. Therefore, the electronic structure of the SWNT involved is substantially the same as that of free, individual (and small ropes of) SWNT. Their high conductivity makes the individual nanotubes extremely electrically polarizable, and materials containing these individual, highly polarizable molecules exhibit novel electrical properties including a high dielectric constant

    Single-walled carbon nanotubes in superacid: X-ray and calorimetric evidence for partly ordered H\u3csub\u3e2\u3c/sub\u3eSO\u3csub\u3e4\u3c/sub\u3e

    Get PDF
    Liquid anhydrous sulfuric acid forms a partly ordered structure in the presence of single-walled carbon nanotubes (SWNTs). X-ray scattering from aligned fibers immersed in acid shows the formation of molecular shells wrapped around SWNTs. Differential scanning calorimetry of SWNT-acid suspensions exhibits concentration-dependent supercooling/melting behavior, confirming that the partly ordered molecules are a new phase. We propose that charge transfer between nanotube π electrons and highly oxidizing superacid is responsible for the unique partly ordered structure

    Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties

    Get PDF
    Thick films of single wall carbon nanotubes (SWNT) exhibiting in-plane preferred orientation have been produced by filter deposition from suspension in strong magnetic fields. We characterize the field-induced alignment with x-ray fiber diagrams and polarized Raman scattering, using a model which includes a completely unaligned fraction. We correlate the texture parameters with resistivity and thermal conductivity measured parallel and perpendicular to the alignment direction. Results obtained with 7 and 26 Tesla fields are compared. We find no significant field dependence of the distribution width, while the aligned fraction is slightly greater at the higher field. Anisotropy in both transport properties is modest, with ratios in the range 5–9, consistent with the measured texture parameters assuming a simple model of rigid rod conductors. We suggest that further enhancements in anisotropic properties will require optimizing the filter deposition process rather than larger magnetic fields. We show that both x-ray and Raman data are required for a complete texture analysis of oriented SWNT materials

    Method for separating single-wall carbon nanotubes and compositions thereof

    Get PDF
    The invention relates to a process for sorting and separating a mixture of (n, m) type single-wall carbon nanotubes according to (n, m) type. A mixture of (n, m) type single-wall carbon nanotubes is suspended such that the single-wall carbon nanotubes are individually dispersed. The nanotube suspension can be done in a surfactant-water solution and the surfactant surrounding the nanotubes keeps the nanotube isolated and from aggregating with other nanotubes. The nanotube suspension is acidified to protonate a fraction of the nanotubes. An electric field is applied and the protonated nanotubes migrate in the electric fields at different rates dependent on their (n, m) type. Fractions of nanotubes are collected at different fractionation times. The process of protonation, applying an electric field, and fractionation is repeated at increasingly higher pH to separated the (n, m) nanotube mixture into individual (n, m) nanotube fractions. The separation enables new electronic devices requiring selected (n, m) nanotube types

    Bulk Cutting of Carbon Nanotubes Using Electron Beam Irradiation

    Get PDF
    According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm
    • …
    corecore