1,236 research outputs found

    HST Observations of Gravitationally Lensed Features in the Rich Cluster Ac114

    Full text link
    Deep Hubble Space Telescope images of superlative resolution obtained for the distant rich cluster AC114 (z=0.31) reveal a variety of gravitational lensing phenomena for which ground-based spectroscopy is available. We present a luminous arc which is clearly resolved by HST and appears to be a lensed z=0.64 sub-L star spiral galaxy with a detected rotation curve. Of greatest interest is a remarkably symmetrical pair of compact blue images separated by 10 arcsec and lying close to the cluster cD. We propose that these images arise from a single very faint background source gravitationally lensed by the cluster core. Deep ground-based spectroscopy confirms the lensing hypothesis and suggests the source is a compact star forming system at a redshift z=1.86. Taking advantage of the resolved structure around each image and their very blue colours, we have identified a candidate third image of the same source roughly 50 arcsec away. The angular separation of the three images is much larger than previous multiply-imaged systems and indicates a deep gravitational potential in the cluster centre. Resolved multiply-imaged systems, readily recognised with HST, promise to provide unique constraints on the mass distribution in the cores of intermediate redshift clusters.Comment: submitted to ApJ, 6 pages (no figures), uuencoded Postscript, compressed TAR of Postscript figures available via anonymous ftp in users/irs/figs/ac114_figs.tar.gz on astro.caltech.edu. PAL-IRS-

    Detection of weak lensing by a cluster of galaxies at z=0.83

    Get PDF
    We report the detection of weak gravitational lensing of faint, distant background galaxies by the rich, X-ray luminous cluster of galaxies MS1054-03 at z=0.83. This is the first measurement of weak lensing by a bona fide cluster at such a high redshift. We detect tangential shear at the 5% - 10% level over a range of radii 50'' < r < 250'' centered on the optical position of the cluster. Two-dimensional mass reconstruction using galaxies with 21.5 < I < 25.5 shows a strong peak which coincides with the peak of the smoothed cluster light distribution. Splitting this sample by magnitude (at I = 23.5) and color (at R-I = 0.7), we find that the brighter and redder subsamples are only very weakly distorted, indicating that the faint blue galaxies (FBG's), which dominate the shear signal, are relatively more distant. The derived cluster mass is quite sensitive to the N(z) for the FBG's. At one extreme, if all the FBG's are at z_s = 3, then the mass within a 0.5h−10.5h^{-1}Mpc aperture is (5.9±1.24)×1014(5.9 \pm 1.24)\times 10^{14}\h1 M⊙M_\odot, and the mass-to-light ratio is M/LV=350±70hM/L_V = 350 \pm 70 h in solar units. For zs=1.5z_s = 1.5 the derived mass is ∼\sim70\% higher and M/L≃580hM/L \simeq 580 h. If N(z)N(z) follows the no evolution model (in shape) then M/L≃800hM/L \simeq 800h, and if all the FBG's lie at z_s\la 1 the required M/LM/L exceeds 1600h1600h. These data provide clear evidence that large, dense mass concentrations existed at early epochs; that they can be weighed efficiently by weak lensing observations; and that most of the FBG's are at high redshift.Comment: Submitted to ApJ, 15 pages (incl 8 figs, 3 of which are plates). Plate images not included, but are available from ftp://hubble.ifa.hawaii.edu/pub/ger/ms1054/ms1054_fig[1,3,5].ps.

    Weak Lensing Detection of Cl 1604+4304 at z = 0.90

    Full text link
    We present a weak lensing analysis of the high-redshift cluster Cl 1604+4304. At z=0.90, this is the highest-redshift cluster yet detected with weak lensing. It is also one of a sample of high-redshift, optically-selected clusters whose X-ray temperatures are lower than expected based on their velocity dispersions. Both the gas temperature and galaxy velocity dispersion are proxies for its mass, which can be determined more directly by a lensing analysis. Modeling the cluster as a singular isothermal sphere, we find that the mass contained within projected radius R is 3.69+-1.47 * (R/500 kpc) 10^14 M_odot. This corresponds to an inferred velocity dispersion of 1004+-199 km/s, which agrees well with the measured velocity dispersion of 989+98-76 km/s (Gal & Lubin 2004). These numbers are higher than the 575+110-85 km/s inferred from Cl 1604+4304 X-ray temperature, however all three velocity dispersion estimates are consistent within ~ 1.9 sigma.Comment: Revised version accepted for publication in AJ (January 2005). 2 added figures (6 figures total

    Large Scale Structure traced by Molecular Gas at High Redshift

    Full text link
    We present observations of redshifted CO(1-0) and CO(2-1) in a field containing an overdensity of Lyman break galaxies (LBGs) at z=5.12. Our Australia Telescope Compact Array observations were centered between two spectroscopically-confirmed z=5.12 galaxies. We place upper limits on the molecular gas masses in these two galaxies of M(H_2) <1.7 x 10^10 M_sun and <2.9 x 10^9 M_sun (2 sigma), comparable to their stellar masses. We detect an optically-faint line emitter situated between the two LBGs which we identify as warm molecular gas at z=5.1245 +/- 0.0001. This source, detected in the CO(2-1) transition but undetected in CO(1-0), has an integrated line flux of 0.106 +/- 0.012 Jy km/s, yielding an inferred gas mass M(H_2)=(1.9 +/- 0.2) x 10^10 M_sun. Molecular line emitters without detectable counterparts at optical and infrared wavelengths may be crucial tracers of structure and mass at high redshift.Comment: 4 pages, accepted for publication in ApJ Letter

    Evidence for extended, obscured starbursts in submm galaxies

    Full text link
    We compare high-resolution optical and radio imaging of 12 luminous submm galaxies at z=2.2+/-0.2 observed with HST and the MERLIN and VLA at comparable spatial resolution, 0.3" (2kpc). The radio emission traces the likely far-infrared morphology of these dusty, luminous galaxies. In ~30% of the sample the radio appears unresolved, suggesting that the emission is compact: either an obscured AGN or nuclear starburst. However, in the majority, ~70% (8/12), the radio emission is resolved by MERLIN/VLA on scales of ~1" (10 kpc). For these galaxies the radio morphologies are broadly similar to their restframe UV emission seen by HST. We discuss the probable mechanisms for the extended emission and conclude that their luminous radio and submm emission arises from a large, spatially-extended starburst. The median SFRs are 1700Mo/yr occuring within a ~40kpc^2 region, giving a star formation density of 45Mo/yr/kpc^2. Such vigorous and extended starbursts appear to be uniquely associated with the submm population. A more detailed comparison of the distribution of UV and radio emission shows that the broad similarities on large scales are not carried through to smaller scales, where there is rarely a one-to-one correspondance. We interpret this as resulting from highly structured internal obscuration, suggesting that the vigorous activity is producing wind-blown channels through the obscuration in these galaxies. If correct this underlines the difficulty of using UV morphologies to understand structural properties of this population and also may explain the surprising frequency of Ly-alpha emission in their spectra. [Abridged]Comment: 7 pages, 3 figure

    Dark Energy and the mass of galaxy clusters

    Get PDF
    Up to now, Dark Energy evidences are based on the dynamics of the universe on very large scales, above 1 Gpc. Assuming it continues to behave like a cosmological constant Λ\Lambda on much smaller scales, I discuss its effects on the motion of non-relativistic test-particles in a weak gravitational field and I propose a way to detect evidences of Λ≠0\Lambda \neq 0 at the scale of about 1 Mpc: the main ingredient is the measurement of galaxy cluster masses.Comment: 5 pages, no figures, references adde

    The acute influence of sucrose consumption with and without vitamin C co-ingestion on microvascular reactivity in healthy young adults

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.  Background Sugar sweetened beverages (SSB) are a major source of dietary sugar and a public health concern. Glucose consumption acutely influences microvascular reactivity in healthy adults, possibly via oxidative stress. The purpose of this study was to observe the acute influence of a more relevant dose of sucrose on microvascular reactivity, and to identify whether this response is influenced by the amount of vitamin C typically contained in SSB. Methods Thirteen ostensibly healthy adults (8 male, 5 female) performed three 1-day trials in a randomized order; the consumption of 300 ml water (control; CON), or 300 ml water with 50 g sucrose (SUGAR) or 50 g sucrose with 160 mg of vitamin C (VITC). Near infrared spectroscopy was used to determine peak reactive hyperaemia (PRH), the rate of desaturation (Slope 1) and reperfusion (Slope 2), and the total area under the reperfusion curve versus time (TRH) following 5 min of forearm cuff occlusion before and 30, 60, 90 and 120 min after test drink consumption. Results SUGAR and VITC significantly increased the total area under the curve versus time for plasma glucose (P < 0.05 for both). No changes in microvascular reactivity were observed between trials, although VITC increased Slope 1 compared to both SUGAR and CON 30 and 60 min post drink (P < 0.05 for both). Conclusion The consumption of a sugar load representative of commercially available SSB did not influence microvascular reactivity. The co-ingestion of Vitamin C also failed to influence microvascular reactivity, but did increase the rate of oxygen extraction
    • …
    corecore