29 research outputs found

    Designed Peptides Competitively Inhibit EZH2 Catalytic Activity.

    No full text
    <p>(A) A radiometric assay was used to determine the EZH2 catalytic activity in the absence (lane 1) or presence of 125 µM of candidate EZH2 inhibitor peptides (lanes 2–11). The inhibitory potential of native H3 peptide (lane 12) and an unrelated peptide (random; lane 13) was assessed. A reaction without peptide, but heat inactivated at 95°C for 5 min prior to incubation, was used to determine the background (lane 14). Shown is a fluorographic image of [<sup>3</sup>H]-labeled methyl groups incorporated on histone H3 (upper panel). Histones were visualized by Coomassie Blue staining (lower panel). (B) A high throughput radiometric assay was used to determine the inhibitory potential of candidate peptides. Shown is the absolute EZH2 HMT activity (counts per minute, cpm). (C,D) The catalytic activity of EZH2(C) and EZH1(D) was assessed in the absence (lane 2) or presence (lane 3) of SQ037 [125 µM]. Shown is a fluorographic image of [<sup>3</sup>H]-labeled methyl groups incorporated on histone H3 (upper panel). Histones and PRC2 constituents were visualized by Coomassie Blue staining (lower panel).</p

    Chromoanasynthesis is a common mechanism that leads to ERBB2 amplifications in a cohort of early stage HER2+ breast cancer samples

    No full text
    Abstract Background HER2 positive (HER2+) breast cancers involve chromosomal structural alterations that act as oncogenic driver events. Methods We interrogated the genomic structure of 18 clinically-defined HER2+ breast tumors through integrated analysis of whole genome and transcriptome sequencing, coupled with clinical information. Results ERBB2 overexpression in 15 of these tumors was associated with ERBB2 amplification due to chromoanasynthesis with six of them containing single events and the other nine exhibiting multiple events. Two of the more complex cases had adverse clinical outcomes. Chromosomes 8 was commonly involved in the same chromoanasynthesis with 17. In ten cases where chromosome 8 was involved we observed NRG1 fusions (two cases), NRG1 amplification (one case), FGFR1 amplification and ADAM32 or ADAM5 fusions. ERBB3 over-expression was associated with NRG1 fusions and EGFR and ERBB3 expressions were anti-correlated. Of the remaining three cases, one had a small duplication fully encompassing ERBB2 and was accompanied with a pathogenic mutation. Conclusion Chromoanasynthesis involving chromosome 17 can lead to ERBB2 amplifications in HER2+ breast cancer. However, additional large genomic alterations contribute to a high level of genomic complexity, generating the hypothesis that worse outcome could be associated with multiple chromoanasynthetic events

    Constitutional chromosome rearrangements that mimic the 2017 world health organization acute myeloid leukemia with recurrent genetic abnormalities : A study of three cases and review of the literature.

    No full text
    OBJECTIVES: To identify and characterize constitutional chromosomal rearrangements that mimic recurrent genetic abnormalities in acute myeloid leukemia (AML). METHODS: Bone marrow and blood chromosome studies were reviewed to identify constitutional rearrangements that resemble those designated by the 2017 revised World Health Organization (WHO) AML with recurrent genetic abnormalities . Mate-pair sequencing (MPseq) was performed on cases with constitutional chromosome mimics of recurrent AML abnormalities to further define the rearrangement breakpoints. RESULTS: Three cases with constitutional rearrangements were identified, including t(6;9)(p23;q34), inv(16)(p13.1q22), and t(9;22)(q34.1;q12.2). Two cases were bone marrow specimens being evaluated for hematologic neoplasms, while one case was a blood specimen being evaluated for primary ovarian insufficiency. MPseq provided high-resolution and precise rearrangement breakpoints, and resolved the atypical FISH results generated with each rearrangement. CONCLUSIONS: Our findings illustrate that constitutional rearrangements can mimic recurrent genetic abnormalities observed in AML, and we emphasize the importance of correlating genetic data with clinical and hematopathologic information

    Three-Stage <i>De Novo</i> Peptide Design Workflow Diagram.

    No full text
    <p>Stage I is an optimization-based sequence selection stage. Stage II is a fold specificity calculation to determine how well designed sequences fold into the desired template structure compared to the native sequence. Stage III is an approximate binding affinity calculation to determine how well the designed sequences binds to the target protein.</p
    corecore