120 research outputs found

    New bis-pyrazole-bis-acetate based coordination complexes: influence of counter-anions and metal ions on the supramolecular structures

    Get PDF
    A new flexible bis-pyrazol-bis-acetate ligand, diethyl 2,2’-(pyridine-2,6-diylbis (5-methyl-1H-pyrazole-3,1-diyl))diacetate (L), has been synthesised, and three coordination complexes, namely, [Zn(L)2](BF4)2 (1), [MnLCl2] (2) and [CdLCl2] (3) have been obtained. All ligands and complexes were characterised by IR, mass spectroscopy, thermogravimetric analysis and single-crystal X-ray diffraction. Single crystal X-ray diffraction experiment revealed that the primary supramolecular building block of 1 is a hexagonal chair shaped 0D hydrogen bonded synthon (stabilised by C–H∙∙∙O hydrogen bonding and C=O∙∙∙π interactions), which further built into a 2D corrugated sheet-like architecture having a 3-c net honeycomb topology, and finally extended to a 3D hydrogen bonded network structure having a five nodal 1,3,3,3,7-c net, through C–H∙∙∙F interactions. On the other hand, the two crystallographically independent molecules of 2 exhibited two distinct supramolecular structures such as 2D hydrogen bonded sheet structure and 1D zigzag hydrogen bonded chain, sustained by C–H∙O and C–H∙∙∙Cl interactions, which are further self-assembled into a 3,4-c network structure, and 3 showed a 2D hydrogen bonded sheet structure. The supramolecular structural diversity in these complexes is due to the different conformations adopted by the ligands, which are mainly induced by different metal ions with coordination environments controlled by different anions. Hirshfeld surface analysis was explored for the qualitative and quantitative analysis of the supramolecular interactions

    Porphyrin-silica gel hybrids as effective and selective copper(II) adsorbents from industrial wastewater

    Get PDF
    Porphyrins are an important class of ligands with a tremendous ability to capture metal ions closely related to the rich coordination chemistry of porphyrins. Herein we use this characteristic to develop silica gel grafted derivatives for water remediation applications. Therefore, two porphyrin derivatives, one with three and the other with four mercaptopyridyl units were grafted on silica gel functionalized with 3-aminopropyltriethoxysilane. The new adsorbents Si3PyS and Si4PyS were characterized using a suitable set of techniques confirming the covalent attachment of the porphyrins to the silica surface. Additionally, microscopy and N2 adsorption analysis confirmed the structural integrity and preservation of the mesoporous structure of Si during surface modification. The results show that both hybrid materials exhibit good chemical and thermal stability and an outstanding Cu2+ removal capability, with a chemical adsorption capacity of 176.32 mg g–1 and 184.16 mg g–1, respectively. These materials have also been used in real water and industrial wastewater samples with minimal interference in their adsorption capabilities. Density Functional Theory calculations were performed to confirm the good performance of the hybrid materials Si3PyS and Si4PyS towards metal ions. The functionalization of silica surface with porphyrin-based ligands bearing additional binding motifs drastically improves the adsorption capability of the new hybrids towards metal ions. The presence of pyridyl units brings a meaningful advantage, since both porphyrin core and appended pyridyl groups are able of binding Cu2+ ions with high affinity, contributing to the enhancement of the chelating features of the adsorbents prepared when compared with other ligands supported in silica-based materials.publishe

    β-Keto-enol Tethered Pyridine and Thiophene: Synthesis, Crystal Structure Determination and Its Organic Immobilization on Silica for Efficient Solid-Liquid Extraction of Heavy Metals

    No full text
    Molecules bearing β-keto-enol functionality are potential candidates for coordination chemistry. Reported herein is the first synthesis and use of a novel designed ligand based on β-keto-enol group embedded with pyridine and thiophene moieties. The product was prepared in a one-step procedure by mixed Claisen condensation and was characterized by EA, m/z, FT-IR, (1H, 13C) NMR and single-crystal X-ray diffraction analysis. The new structure was grafted onto silica particles to afford a chelating matrix which was well-characterized by EA, FT-IR, solid-state 13C-NMR, BET, BJH, SEM and TGA. The newly prepared organic-inorganic material was used as an adsorbent for efficient solid-phase extraction (SPE) of Cu(II), Zn(II), Cd(II) and Pb(II) from aqueous solutions and showed a capture capacity of 104.12 mg·g−1, 98.90 mg·g−1, 72.02 mg·g−1, and 65.54 mg·g−1, respectively. The adsorption capacity was investigated, in a batch method, using time of contact, pH, initial concentration, kinetics (Langmuir and Freundlich models), and thermodynamic parameters (ΔG°, ΔH° and ΔS°) of the system effects

    Selective chemical adsorption of Cd(ii) on silica covalently decorated with a β-ketoenol-thiophene-furan receptor

    No full text
    Nowadays, porous hybrid materials are considered as potential reservoirs of metallic species in environmental clean-up technologies. Herein, a new environment-friendly surface with thiophene-furan-β-ketoenol grafted on a colloidal silica surface has been synthesized with the purpose of using it as an effective and selective adsorbent for Cd(II) from aquatic environments. Elemental analysis, Fourier-transform infrared spectroscopy, scanning electronic microscopy, thermogravimetric analysis and Brunauer–Emmett–Teller analysis confirm the successful surface incorporation of the β-ketoenol bis-heterocycle receptor. The novel inorganic–organic hybrid material was applied for Cd(II), Cu(II), Zn(II) and Pb(II) adsorption. Cd(II) adsorption reaches 84.45 mg g−1 within only 30 min at pH 6, and the adsorption was more appropriate with the 2nd order kinetic model (R2 ≥ 0.997) and Langmuir model isotherm where the adsorption process is coherent with a monolayer adsorption reaction. The ΔH°, ΔS° and ΔG° parameters reflect spontaneous, and endothermic adsorption and that the process increases the randomness. The new material demonstrates its efficiency and selectivity towards Cd(II) and promises good reusability for at least five elimination cycles. The new material can be considered as a reliable cleaner of Cd(II) from aquatic environments
    • …
    corecore