89 research outputs found

    POROSIMETRY BY DOUBLE-RANDOM MULTIPLE TREE STRUCTURING IN VIRTUAL CONCRETE

    Get PDF
    Two different porosimetry methods are presented in two successive papers. Inspiration for the development came from the rapidly-exploring random tree (RRT) approach used in robotics. The novel methods are applied to virtual cementitious materials produced by a modern concurrent algorithm-based discrete element modeling system, HADES. This would render possible realistically simulating all aspects of particulate matter that influence structure-sensitive features of the pore network structure in maturing concrete, namely size, shape and dispersion of aggregate and cement particles. Pore space is a complex tortuous entity. Practical methods conventionally applied for assessment of pore size distribution may fail or present biased information. Among them, mercury intrusion porosimetry and 2D quantitative image analysis are popular. The mathematical morphology operator “opening” can be applied to sections and even provide 3D information on pore size distribution, provided isotropy is guaranteed. Unfortunately, aggregate grain surfaces lead to pore anisotropy. The presented methods allow exploration of pore space in the virtual material, after which pore size distribution is derived from star volume measurements.  In addition to size of pores their continuity is of crucial importance for durability estimation. Double-random multiple tree structuring (DRaMuTS), presented herein, and random node structuring (RaNoS) provide such information. The latter method will be introduced in a next issue of IA&S

    On the existence of representative volumes for softening quasi-brittle materials: a failure zone averaging scheme

    Get PDF
    The concept of the representative volume element (RVE) for softening materials is revised in this contribution. It is demonstrated by means of numerical simulations that there exists a sample which is statistically representative for quasi-brittle materials with random microstructure like concrete. This finding is an important ingredient for homogenization-based multiscale modelling of softening materials.Peer ReviewedPostprint (author's final draft

    Computational homogenization for multiscale crack modeling: implementational and computational aspects

    Get PDF
    This is the peer reviewed version of the following article: [Nguyen, V. P., Lloberas-Valls, O., Stroeven, M. and Sluys, L. J. (2012), Computational homogenization for multiscale crack modeling. Implementational and computational aspects. Int. J. Numer. Meth. Engng, 89: 192–226. doi:10.1002/nme.3237], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/nme.3237/abstract. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingA computational homogenization procedure for cohesive and adhesive crack modeling of materials with a heterogeneous microstructure has been recently presented in Computer Methods in Applied Mechanics and Engineering (2010, DOI:10.1016/j.cma.2010.10.013). The macroscopic material properties of the cohesive cracks are obtained from the inelastic deformation manifested in a localization band (modeled with a continuum damage theory) at the microscopic scale. The macroscopic behavior of the adhesive crack is derived from the response of a microscale sample representing the microstructure inside the adhesive crack. In this manuscript, we extend the theory presented in Computer Methods in Applied Mechanics and Engineering (2010, DOI:10.1016/j.cma.2010.10.013) with implementation details, solutions for cyclic loading, crack propagation, numerical analysis of the convergence characteristics of the multiscale method, and treatment of macroscopic snapback in a multiscale simulation. Numerical examples including crack growth simulations with extended finite elements are given to demonstrate the performance of the methodPeer ReviewedPostprint (author's final draft

    Homogenization-based multiscale crack modelling: from micro-diffusive damage to macro-cracks

    Get PDF
    The existence of a representative volume element (RVE) for a class of quasi-brittle materials having a random heterogeneous microstructure in tensile, shear and mixed mode loading is demonstrated by deriving traction–separation relations, which are objective with respect to RVE size. A computational homogenization based multiscale crack modelling framework, implemented in an FE2 setting, for quasi-brittle solids with complex random microstructure is presented. The objectivity of the macroscopic response to the micro-sample size is shown by numerical simulations. Therefore, a homogenization scheme, which is objective with respect to macroscopic discretization and microscopic sample size, is devised. Numerical examples including a comparison with direct numerical simulation are given to demonstrate the performance of the proposed method.Peer ReviewedPostprint (author's final draft

    Multiscale analysis of damage using dual and primal domain decomposition techniques

    Get PDF
    In this contribution, dual and primal domain decomposition techniques are studied for the multiscale analysis of failure in quasi-brittle materials. The multiscale strategy essentially consists in decomposing the structure into a number of nonoverlapping domains and considering a refined spatial resolution where needed. In multiscale analysis of damage, the spatial refinement is performed where damage nucleation and propagation take place. The domain decomposition approach turns to be a computationally cheaper alternative to the direct numerical solution in which a fine scale model is considered throughout the complete sample. Dual and primal domain decomposition techniques are appropriate for such concurrent multiscale analyses and provide identical results. Parallel scalability of the multiscale analysis is studied using a moderate number of processors and a parallel direct solver for the system obtained through the assembly of all domains.Postprint (published version

    A novel, total-iterative approach to model quasi-brittle materials

    No full text
    In quasi-brittle materials, such as reinforced concrete, localisation of initially diffuse cracking evolving in localised cracking patterns consists of a numerically challenging task. With conventional iterative methods, convergence of the numerical solution scheme to model crack localisation is often difficult to obtain. On the other hand, conventional total approaches, such as the Sequentially Linear Approach, although robust, fail to approximate properly the underlying material law. In the present work, a new model is introduced, designated the Total Iterative Approach, in which the internal damage variables are updated iteratively. It is found that this approach is robust, allows for the correct approximation of the material law and is a powerful tool for the analysis of softening behaviour. Some examples are presented to illustrate the performance of the model.Green Open Access added to TU Delft Institutional Repository ''You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Materials- Mechanics- Management & Desig

    Adaptive multiscale extended finite element method (MS-XFEM) for the simulation of multiple fractures propagation in geological formations

    No full text
    In fractured geological formations, as a result of the in-situ stress changes, fractures can propagate or slide. This phenomenon can be efficiently modeled by the extended finite element method (XFEM) when there are only a few fractures present. However, geological reservoirs contain many fractures which can also cross and are densely populated. Therefore, the classical XFEM is too expensive to be applied for the simulation of propagating fractures in geological formations. To reduce the costs, typically, homogenization or upscaling is used. However, they result in inaccurate solutions, since no separation of scales exists in this process. To resolve this challenge, in this work, a multiscale XFEM (MS-XFEM) for propagating fractures is developed and presented. In each time step, given the current geometries of the fractures, local XFEM-based basis functions are constructed or adaptively updated. The adaptive update takes place in certain regions where fracture geometries are changed due to propagation. Using these basis functions, a very efficient FEM-based coarse-scale system is developed since it has no extra degrees of freedom (DOFs). Once the coarse-scale system is solved, its solution is prolonged to the fine-scale original resolution using the basis functions. This approximate fine-scale solution is then used to estimate the group of growing fractures tips and their growing angles. This allows for exploiting the locality of the propagation process fully while solving a global system. To control the error, an iterative procedure is also developed. Proof-of-concept test cases are presented to study the developed MS-XFEM algorithm. It is shown that MS-XFEM results are capable of predicting the propagating paths for complicated fracture patterns. As such, MS-XFEM casts a promising method for field-scale applications.</p

    Verification, validation, and parameter study of a computational model for corrosion pit growth adopting the level-set method.: Part I: Corrosion

    No full text
    Corrosion is a phenomenon observed in structural components in corrosive environments such as pipelines, bridges, aircrafts, turbines, etc. The computational model of corrosion should enjoy two features: a) accurately considering the electrochemistry of corrosion and b) properly dealing with the moving interface between solid and electrolyte. There are several approaches to model corrosion such as using FEM with mesh refinement algorithms, combining FEM and level-set method, employing finite volume methods, adopting peridynamic formulation, and utilizing phase field models. Because of its accuracy, lower computational cost, and robust dealing with multiple pit merging, the model which combines FEM with level-set method is selected to be more extensively assessed in this paper. Part I focuses on demonstrating the model's capabilities of simulating pitting corrosion through a set of numerical examples which include numerical solution verification, experimental validation, and uncertainty quantification of model parameters and properties.</p

    Dynamic simulations of traditional masonry materials at different loading rates using an enriched damage delay: Theory and practical applications

    No full text
    A local damage model has been recently developed for the numerical simulation of the static behaviour of adobe bricks. Mesh insensitivity of the local model was obtained by generalizing the damage delay concept based on a Dirichlet boundary condition decomposition integrated in an implicit solver. The regularization properties of the model were proven before only in statics. In this study, mesh independence is demonstrated in dynamics analysing the problem of a cantilever bar uniaxially loaded at high deformation rates. Furthermore, the physical background of the delay formulation is interpreted regarding the main failure processes in compression exhibited by quasi brittle materials used in masonry. Two limitations of the model in correctly simulating the dynamic behaviour of masonry bricks have been observed. Corrections to the original damage delay formulation are proposed in this study. These enhance the capability of the model to address also distributed failure of traditional geo-materials and the inherent rate dependence also at high strain rate regimes. The improvements are demonstrated in this paper by means of numerical simulations of both theoretical tests and practical applications. These consist of experimental tests in compression recently performed by the authors at different strain rates, from statics to high velocity impact tests.</p
    • …
    corecore