44 research outputs found

    Transient Facial Nerve Paralysis (Bell's Palsy) following Intranasal Delivery of a Genetically Detoxified Mutant of Escherichia coli Heat Labile Toxin

    Get PDF
    BACKGROUND: An association was previously established between facial nerve paralysis (Bell's palsy) and intranasal administration of an inactivated influenza virosome vaccine containing an enzymatically active Escherichia coli Heat Labile Toxin (LT) adjuvant. The individual component(s) responsible for paralysis were not identified, and the vaccine was withdrawn. METHODOLOGY/PRINCIPAL FINDINGS: Subjects participating in two contemporaneous non-randomized Phase 1 clinical trials of nasal subunit vaccines against Human Immunodeficiency Virus and tuberculosis, both of which employed an enzymatically inactive non-toxic mutant LT adjuvant (LTK63), underwent active follow-up for adverse events using diary-cards and clinical examination. Two healthy subjects experienced transient peripheral facial nerve palsies 44 and 60 days after passive nasal instillation of LTK63, possibly a result of retrograde axonal transport after neuronal ganglioside binding or an inflammatory immune response, but without exaggerated immune responses to LTK63. CONCLUSIONS/SIGNIFICANCE: While the unique anatomical predisposition of the facial nerve to compression suggests nasal delivery of neuronal-binding LT-derived adjuvants is inadvisable, their continued investigation as topical or mucosal adjuvants and antigens appears warranted on the basis of longstanding safety via oral, percutaneous, and other mucosal routes

    In vitro and in vivo mRNA delivery using lipid-enveloped pHresponsive polymer nanoparticles

    Get PDF
    Biodegradable core−shell structured nanoparticles with a poly(β-amino ester) (PBAE) core enveloped by a phospholipid bilayer shell were developed for in vivo mRNA delivery with a view toward delivery of mRNA-based vaccines. The pH-responsive PBAE component was chosen to promote endosome disruption, while the lipid surface layer was selected to minimize toxicity of the polycation core. Messenger RNA was efficiently adsorbed via electrostatic interactions onto the surface of these net positively charged nanoparticles. In vitro, mRNA-loaded particle uptake by dendritic cells led to mRNA delivery into the cytosol with low cytotoxicity, followed by translation of the encoded protein in these difficult-to-transfect cells at a frequency of 30%. Particles loaded with mRNA administered intranasally (i.n.) in mice led to the expression of the reporter protein luciferase in vivo as soon as 6 h after administration, a time point when naked mRNA given i.n. showed no expression. At later time points, luciferase expression was detected in naked mRNA-treated mice, but this group showed a wide variation in levels of transfection, compared to particle-treated mice. This system may thus be promising for noninvasive delivery of mRNA-based vaccines.United States. Dept. of Defense (Institute for Soldier Nanotechnology, contract W911NF-07-D-0004)Ragon Institute of MGH, MIT and HarvardSingapore. Agency for Science, Technology and ResearchHoward Hughes Medical Institute (Investigator

    Antigen-Adjuvant Nanoconjugates for Nasal Vaccination: An Improvement over the Use of Nanoparticles?

    No full text
    Entrapment of antigens in mucoadhesive nanoparticles prepared from N-trimethyl chitosan (TMC) has been shown to increase their immunogenicity. However, because of their large size compared to soluble antigens, particles poorly diffuse through the nasal epithelium. The aim of this work was to study whether nasal vaccination with a much smaller TMC-antigen nanoconjugate would result in higher antibody responses as compared to TMC nanoparticles. TMC was covalently linked to a model antigen, ovalbumin (OVA), using thiol chemistry. For comparison, TMC/OVA nanoparticles and solutions of OVA and a physical mixture of TMC and OVA were made. As shown previously for TMC/OVA nanoparticles, TMC-OVA conjugate prolonged the nasal residence time of the antigen. TMC-OVA conjugate diffused significantly better through a monolayer of lung carcinoma (Calu-3) cells than TMC/OVA nanoparticles did. Moreover, nasal immunization of mice with the conjugate resulted in significantly more OVA positive DCs in the cervical lymph nodes as compared to TMC/OVA nanoparticles. Mice nasally immunized with TMC-OVA conjugate produced high levels of secretory IgA in nasal washes and higher titers of OVA-specific IgG than mice immunized with TMC/OVA nanoparticles after a priming dose. Moreover, as compared to TMC/OVA nanoparticles, TMC-OVA conjugate induced a more balanced IgG1/IgG2a response. In conclusion, the TMC-antigen nanoconjugate improves nasal delivery and immunogenicity of the antigen. This suggests that efficient codelivery of antigen and adjuvant to DCs, rather than a particulate form of the antigen/adjuvant combination, is decisive for the immunogenicity of the antigen.Bone and mineral researc

    Electron paramagnetic resonance studies of the soluble CuA protein from the cytochrome ba3 of Thermus thermophilus.

    Get PDF
    The electron paramagnetic resonance (EPR) spectrum of the binuclear CuA center in the water-soluble subunit II fragment from cytochrome ba3 of Thermus thermophilus was recorded at 3.93, 9.45, and 34.03 GHz, and the EPR parameters were determined by computer simulations. The frequency and M1 dependence of the linewidth was discussed in terms of g strain superimposed on a correlation between the A and g values. The g values were found to be gx = 1.996, gy = 2.011, gz = 2.187, and the two Cu ions contribute nearly equally to the hyperfine structure, with magnitude of Ax magnitude of approximately 15 G, magnitude of Ay magnitude = 29 G, and magnitude of Az magnitude of = 28.5 G (65Cu). Theoretical CNDO/S calculations, based on the x-ray structure of the Paracoccus denitrificans enzyme, yield a singly occupied antibonding orbital in which each Cu is pi*-bonded to one S and sigma*-bonded to the other. In contrast to the equal spin distribution suggested by the EPR simulations, the calculated contributions from the Cu ions differ by a factor of 2. However, only small changes in the ligand geometry are needed to reproduce the experimental results
    corecore