363 research outputs found

    Year in review 2005: Critical Care – Respirology: mechanical ventilation, infection, monitoring, and education

    Get PDF
    We summarize all original research in the field of respiratory intensive care medicine published in 2005 in Critical Care. Twenty-seven articles were grouped into the following categories and subcategories to facilitate rapid overview: mechanical ventilation (physiology, spontaneous breathing during mechanical ventilation, high frequency oscillatory ventilation, side effects of mechanical ventilation, sedation, and prone positioning); infection (pneumonia and sepsis); monitoring (ventilatory monitoring, pulmonary artery catheter and pulse oxymeter); and education (training and health outcome)

    Rethinking Acute Respiratory Distress Syndrome after COVID-19: If a “Better” Definition Is the Answer, What Is the Question?

    Get PDF
    The definition of acute respiratory distress syndrome (ARDS) has a somewhat controversial history, with some even questioning the need for the term "ARDS." This controversy has been amplified by the coronavirus disease (COVID-19) pandemic given the marked increase in the incidence of ARDS, the relatively new treatment modalities that do not fit neatly with the Berlin definition, and the difficulty of making the diagnosis in resource-limited settings. We propose that attempts to revise the definition of ARDS should apply the framework originally developed by psychologists and social scientists and used by other medical disciplines to generate and assess definitions of clinical syndromes that do not have gold standards. This framework is structured around measures of reliability, feasibility, and validity. Future revisions of the definition of ARDS should contain the purpose, the methodology, and the framework for empirically testing any proposed definition. Attempts to revise critical illness syndromes' definitions usually hope to make them "better"; our recommendation is that future attempts use the same criteria used by other fields in defining what "better" means

    Bench-to-bedside review: Biotrauma and modulation of the innate immune response

    Get PDF
    The innate immune network is responsible for coordinating the initial defense against potentially noxious stimuli. This complex system includes anatomical, physical and chemical barriers, effector cells and circulating molecules that direct component and system interactions. Besides the direct effects of breaching pulmonary protective barriers, cyclic stretch generated during mechanical ventilation (MV) has been implicated in the modulation of the innate immunity. Evidence from recent human trials suggests that controlling MV-forces may significantly impact outcome in acute respiratory distress syndrome. In this paper, we explore the pertinent evidence implicating biotrauma caused by cyclic MV and its effect on innate immune responses

    Subject–ventilator synchrony during neural versus pneumatically triggered non-invasive helmet ventilation

    Get PDF
    OBJECTIVE: Patient-ventilator synchrony during non-invasive pressure support ventilation with the helmet device is often compromised when conventional pneumatic triggering and cycling-off were used. A possible solution to this shortcoming is to replace the pneumatic triggering with neural triggering and cycling-off-using the diaphragm electrical activity (EA(di)). This signal is insensitive to leaks and to the compliance of the ventilator circuit. DESIGN: Randomized, single-blinded, experimental study. SETTING: University Hospital. PARTICIPANTS AND SUBJECTS: Seven healthy human volunteers. INTERVENTIONS: Pneumatic triggering and cycling-off were compared to neural triggering and cycling-off during NIV delivered with the helmet. MEASUREMENTS AND RESULTS: Triggering and cycling-off delays, wasted efforts, and breathing comfort were determined during restricted breathing efforts (<20% of voluntary maximum EA(di)) with various combinations of pressure support (PSV) (5, 10, 20 cm H(2)O) and respiratory rates (10, 20, 30 breath/min). During pneumatic triggering and cycling-off, the subject-ventilator synchrony was progressively more impaired with increasing respiratory rate and levels of PSV (p < 0.001). During neural triggering and cycling-off, effect of increasing respiratory rate and levels of PSV on subject-ventilator synchrony was minimal. Breathing comfort was higher during neural triggering than during pneumatic triggering (p < 0.001). CONCLUSIONS: The present study demonstrates in healthy subjects that subject-ventilator synchrony, trigger effort, and breathing comfort with a helmet interface are considerably less impaired during increasing levels of PSV and respiratory rates with neural triggering and cycling-off, compared to conventional pneumatic triggering and cycling-off
    corecore