329 research outputs found

    First-principles equation of state and phase stability for the Ni-Al system under high pressures

    Full text link
    The equation of state (EOS) of alloys at high pressures is generalized with the cluster expansion method. It is shown that this provides a more accurate description. The low temperature EOSs of Ni-Al alloys on FCC and BCC lattices are obtained with density functional calculations, and the results are in good agreement with experiments. The merits of the generalized EOS model are confirmed by comparison with the mixing model. In addition, the FCC phase diagram of the Ni-Al system is calculated by cluster variation method (CVM) with both spin-polarized and non-spin-polarized effective cluster interactions (ECI). The influence of magnetic energy on the phase stability is analyzed. A long-standing discrepancy between ab initio formation enthalpies and experimental data is addressed by defining a better reference state. This aids both evaluation of an ab initio phase diagram and understanding the thermodynamic behaviors of alloys and compounds. For the first time the high-pressure behavior of order-disorder transition is investigated by ab initio calculations. It is found that order-disorder temperatures follow the Simon melting equation. This may be instructive for experimental and theoretical research on the effect of an order-disorder transition on shock Hugoniots.Comment: 27 pages, 12 figure

    Using bond-length dependent transferable force constants to predict vibrational entropies in Au-Cu, Au-Pd, and Cu-Pd alloys

    Get PDF
    A model is tested to rapidly evaluate the vibrational properties of alloys with site disorder. It is shown that length-dependent transferable force constants exist, and can be used to accurately predict the vibrational entropy of substitutionally ordered and disordered structures in Au-Cu, Au-Pd, and Cu-Pd. For each relevant force constant, a length- dependent function is determined and fitted to force constants obtained from first-principles pseudopotential calculations. We show that these transferable force constants can accurately predict vibrational entropies of L12_{2}-ordered and disordered phases in Cu3_{3}Au, Au3_{3}Pd, Pd3_{3}Au, Cu3_{3}Pd, and Pd3_{3}Au. In addition, we calculate the vibrational entropy difference between L12_{2}-ordered and disordered phases of Au3_{3}Cu and Cu3_{3}Pt.Comment: 9 pages, 6 figures, 3 table

    A Nonzero Gap Two-Dimensional Carbon Allotrope from Porous Graphene

    Full text link
    Graphene is considered one of the most promising materials for future electronic. However, in its pristine form graphene is a gapless material, which imposes limitations to its use in some electronic applications. In order to solve this problem many approaches have been tried, such as, physical and chemical functionalizations. These processes compromise some of the desirable graphene properties. In this work, based on ab initio quantum molecular dynamics, we showed that a two-dimensional carbon allotrope, named biphenylene carbon (BPC) can be obtained from selective dehydrogenation of porous graphene. BPC presents a nonzero bandgap and well-delocalized frontier orbitals. Synthetic routes to BPC are also addressed.Comment: Published on J. Phys. Chem. C, 2012, 116 (23), pp 12810-1281

    Is Workstyle a Mediating Factor for Pain in the Upper Extremity Over Time?

    Get PDF
    Introduction Upper extremity musculoskeletal disorders influence workersā€™ quality of life. Workstyle may be one factor to deal with in workers with pain in the upper extremity. The objective of this study was to determine if workstyle is a mediating factor for upper extremity pain in a changing work environment of office workers over time. Methods Office workers with upper extremity pain filled out a Workstyle questionnaire (WSF) at baseline (nĀ =Ā 110). After 8 and 12Ā months follow-up assessment took place. Participants were divided into a good and an adverse workstyle group at baseline. The presence of upper extremity pain in both groups was calculated and relative risks were determined. Chi-square tests were used. Results Eight months after baseline, 80% of the adverse and 45% of the good workstyle group reported pain. The relative risk (RR) of having upper extremity pain for the adverse compared to the good workstyle group was 1.8 (95% CI 1.08ā€“2.86) (PĀ =Ā 0.055). Twelve months after baseline, upper extremity pain was more often presented in the adverse workstyle compared to the good workstyle group (RRĀ =Ā 3.0, (95% CI 1.76ā€“5.11), PĀ =Ā 0.003). Twelve months after baseline, 100% of the adverse workstyle group and 33% of the good workstyle group reported pain in the upper extremity. Conclusion Workstyle seems to be a mediating factor for upper extremity pain in office workers in a changing work environment. It is recommended to assess workstyle among office workers with upper extremity pain, and to include workstyle behaviour in treatments

    Pressure Dependence of the Elastic Moduli in Aluminum Rich Al-Li Compounds

    Full text link
    I have carried out numerical first principles calculations of the pressure dependence of the elastic moduli for several ordered structures in the Aluminum-Lithium system, specifically FCC Al, FCC and BCC Li, L1_2 Al_3Li, and an ordered FCC Al_7Li supercell. The calculations were performed using the full potential linear augmented plane wave method (LAPW) to calculate the total energy as a function of strain, after which the data was fit to a polynomial function of the strain to determine the modulus. A procedure for estimating the errors in this process is also given. The predicted equilibrium lattice parameters are slightly smaller than found experimentally, consistent with other LDA calculations. The computed elastic moduli are within approximately 10% of the experimentally measured moduli, provided the calculations are carried out at the experimental lattice constant. The LDA equilibrium shear modulus C11-C12 increases from 59.3 GPa in Al, to 76.0 GPa in Al_7Li, to 106.2 GPa in Al_3Li. The modulus C_44 increases from 38.4 GPa in Al to 46.1 GPa in Al_7Li, then falls to 40.7 GPa in Al_3Li. All of the calculated elastic moduli increase with pressure with the exception of BCC Li, which becomes elastically unstable at about 2 GPa, where C_11-C_12 vanishes.Comment: 17 pages (REVTEX) + 7 postscript figure

    Defective complex I assembly due to C20orf7 mutations as a new cause of Leigh syndrome

    Get PDF
    Background: Leigh syndrome is an early onset, progressive, neurodegenerative disorder with developmental and motor skills regression. Characteristic magnetic resonance imaging abnormalities consist of focal bilateral lesions in the basal ganglia and/or the brainstem. The main cause is a deficiency in oxidative phosphorylation due to mutations in an mtDNA or nuclear oxidative phosphorylation gene. Methods and results: A consanguineous Moroccan family with Leigh syndrome comprise 11 children, three of which are affected. Marker analysis revealed a homozygous region of 11.5 Mb on chromosome 20, containing 111 genes. Eight possible mitochondrial candidate genes were sequenced. Patients were homozygous for an unclassified variant (p.P193L) in the cardiolipin synthase gene (CRLS1). As this variant was present in 20% of a Moroccan control population and enzyme activity was only reduced to 50%, this could not explain the rare clinical phenotype in our family. Patients were also homozygous for an amino acid substitution (p.L159F) in C20orf7, a new complex I assembly factor. Parents were heterozygous and unaffected sibs heterozygous or homozygous wild type. The mutation affects the predicted S-adenosylmethionine (SAM) dependent methyltransferase domain of C20orf7, possibly involved in methylation of NDUFB3 during the assembly process. Blue native gel electrophoresis showed an altered complex I assembly with only 30-40% of mature complex I present in patients and 70-90% in carriers. Conclusions: A new cause of Leigh syndrome can be a defect in early complex I assembly due to C20orf7 mutations

    THE GENUS HYPOGLOSSUM KƜTZING (DELESSERIACEAE, RHODOPHYTA) IN THE TROPICAL WESTERN ATLANTIC, INCLUDING H. ANOMALUM SP. NOV. 1

    Full text link
    Observations are made on the occurrence and distribution of the red algal genus Hypoglossum KƜtzing (Delesseriaceae, Ceramiales) in the tropical western Atlantic. In addition to the type of the genus, H. hypoglossoides (Stackh.) Coll. & Herv., three other species are reported: H. anomalum sp. nov., H. involvens (Harv.) J. Ag., and H. tenuifolium (Harv.) J. Ag. A key is presented to distinguish these four species. The newly described species, H. anomalum, is like other species in the genus in that its branches arise endogenously from the primary axial row but it is unique in that the branches emerge from the parent blade at some point between the midline and the margin of the blade. The new species is reported from Puerto Rico and Florida.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65648/1/j.1529-8817.1986.tb04162.x.pd

    Point-charge electrostatics in disordered alloys

    Full text link
    A simple analytic model of point-ion electrostatics has been previously proposed in which the magnitude of the net charge q_i on each atom in an ordered or random alloy depends linearly on the number N_i^(1) of unlike neighbors in its first coordination shell. Point charges extracted from recent large supercell (256-432 atom) local density approximation (LDA) calculations of Cu-Zn random alloys now enable an assessment of the physical validity and accuracy of the simple model. We find that this model accurately describes (i) the trends in q_i vs. N_i^(1), particularly for fcc alloys, (ii) the magnitudes of total electrostatic energies in random alloys, (iii) the relationships between constant-occupation-averaged charges and Coulomb shifts (i.e., the average over all sites occupied by either AA or BB atoms) in the random alloy, and (iv) the linear relation between the site charge q_i and the constant- charge-averaged Coulomb shift (i.e., the average over all sites with the same charge) for fcc alloys. However, for bcc alloys the fluctuations predicted by the model in the q_i vs. V_i relation exceed those found in the LDA supercell calculations. We find that (a) the fluctuations present in the model have a vanishing contribution to the electrostatic energy. (b) Generalizing the model to include a dependence of the charge on the atoms in the first three (two) shells in bcc (fcc) - rather than the first shell only - removes the fluctuations, in complete agreement with the LDA data. We also demonstrate an efficient way to extract charge transfer parameters of the generalized model from LDA calculations on small unit cells.Comment: 15 pages, ReVTeX galley format, 7 eps figures embedded using psfig, to be published in Phys. Rev.
    • ā€¦
    corecore