31 research outputs found

    Overview and Summary of the Third AIAA High Lift Prediction Workshop

    Get PDF
    The third AIAA CFD High-Lift Prediction Workshop was held in Denver, Colorado, in June 2017. The goals of the workshop continued in the tradition of the first and second high-lift workshops: to assess the numerical prediction capability of current-generation computational fluid dynamics (CFD) technology for swept, medium/high-aspect-ratio wings in landing/takeoff (high-lift) configurations. This workshop analyzed the flow over two different configurations, a clean high-lift version of the NASA Common Research Model, and the JAXA Standard Model. The former was a CFD-only study, as experimental data were not available prior to the workshop. The latter was a nacelle/pylon installation study that included comparison with experimental wind tunnel data. The workshop also included a 2-D turbulence model verification exercise. Thirty-five participants submitted a total of 79 data sets of CFD results. A variety of grid systems (both structured and unstructured) as well as different flow simulation methodologies (including Reynolds-averaged Navier-Stokes and Lattice-Boltzmann) were used. This paper analyzes the combined results from all workshop participants. A statistical summary of the CFD results is also included

    Overview and Summary of the Second AIAA High Lift Prediction Workshop

    Get PDF
    The second AIAA CFD High-Lift Prediction Workshop was held in San Diego, California, in June 2013. The goals of the workshop continued in the tradition of the first high-lift workshop: to assess the numerical prediction capability of current-generation computational fluid dynamics (CFD) technology for swept, medium/high-aspect-ratio wings in landing/takeoff (high-lift) configurations. This workshop analyzed the flow over the DLR-F11 model in landing configuration at two different Reynolds numbers. Twenty-six participants submitted a total of 48 data sets of CFD results. A variety of grid systems (both structured and unstructured) were used. Trends due to grid density and Reynolds number were analyzed, and effects of support brackets were also included. This paper analyzes the combined results from all workshop participants. Comparisons with experimental data are made. A statistical summary of the CFD results is also included

    Summary of the 1st AIAA Geometry and Mesh Generation Workshop (GMGW-1) and Future Plans

    Get PDF
    The 1st AIAA Geometry and Mesh Generation Workshop (GMGW-1) was held in conjunction with the AIAA Aviation Forum and Exposition 2017 and in collaboration with the 3rd AIAA Computational Fluid Dynamics (CFD) High Lift Prediction Workshop (HiLiftPW-3). As the first AIAA workshop on these topics, GMGW-1's broad objectives were to assess the current state-of-the art in geometry preprocessing and mesh generation technology as well as software as applied to aircraft and spacecraft systems. The workshop was intended to identify and develop understanding of areas of needed improvement in terms of performance, accuracy, and applicability. It was also to provide a foundation for documenting best practices for geometry preprocessing and mesh generation. The genesis of GMGW-1 is found in the indictments levied against geometry preprocessing and mesh generation - not undeservedly - by the NASA CFD Vision 2030 Study. In order to create a reference against which future progress in geometry preprocessing and mesh generation can be measured, the organizers of GMGW-1, with the assistance of the organizers of HiLiftPW- 3, focused GMGW-1 on generation of meshes of the NASA High Lift Common Research Model (HL-CRM). Some of the generated meshes were provided for use by the participants in HiLiftPW-3. All meshes and the processes by which they were generated were analyzed by GMGW-1 as a first assessment of state of the art practices. The results of GMGW-1 added quantitative detail to known problem areas including geometry modeling, data interoperability, and amount of human intervention. They do provide a clear path toward a vision of geometry preprocessing and mesh generation in the year 2030. The next milepost along this path will be a second workshop

    OVERFLOW Contribution to HiLiftPW-3

    Get PDF
    We plan to perform the following sets of computations: For all our contributions (except where stated) Code: OVERFLOW, Turbulence model: SAnegRCQCR2000. - 1. Results will be submitted for both the full chord flap gap (Case 1a) and partially-sealed Chord Flap gap (Case 1c): 1. Grid Refinement Study; 2. Grids: structured overset grids supplied by HiLiftPW committee; 3. Connectivity: Domain Connectivity Framework, DCF. - 2. Results will be submitted for JAXA Standard Model and Nacelle/Pylon Off (Case 2a), Nacelle/Pylon On (Case 2c): 1. Alpha Study; 2. Grids: structured overset grids supplied by HiLiftPW committee; 3. Connectivity: Pegasus 5 (Peg5). - 3. A study of the effects of different connectivity paradigms: 1. DCF vs Peg5 for HLCRM cases; 2. DCF vs. C3P (NASA Ames) vs. Peg5 for JSM cases; 3. JSM grids will be the focus where we will hopefully see some type of trends with reference to wind tunnel data. - 4. Adaption cases will be attempted for (and submitted where appropriate): 1. Cases 1c,1d: HLCRM; 2. Cases 2c and 2d: JSM; 3. Grid: Near Body grids provided by committee, OffBody grids Cartesian; 4. AMR NearBody and OffBody Adaption. - 5. Case 3 Turbulence model verification study: 1. Grid: Series of 3 finest grids as defined on http://turbmodels.larc.nasa.gov/airfoilwakeverif.html; 2. Turbulence models: SAneg and SAneg RCQCR2000. OVERFLOW 2.2 is a Reynolds-averaged Navier-Stokes (RANS) code developed by NASA..

    CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences

    Get PDF
    This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030

    Navier-Stokes Analysis of a High Wing Transport High-Lift Configuration with Externally Blown Flaps

    Get PDF
    Insights and lessons learned from the aerodynamic analysis of the High Wing Transport (HWT) high-lift configuration are presented. Three-dimensional Navier-Stokes CFD simulations using the OVERFLOW flow solver are compared with high Reynolds test data obtained in the NASA Ames 12 Foot Pressure Wind Tunnel (PWT) facility. Computational analysis of the baseline HWT high-lift configuration with and without Externally Blown Flap (EBF) jet effects is highlighted. Several additional aerodynamic investigations, such as nacelle strake effectiveness and wake vortex studies, are presented. Technical capabilities and shortcomings of the computational method are discussed and summarized

    Overview and Summary of the Second AIAA High-Lift Prediction Workshop

    No full text
    corecore