77 research outputs found

    Liquid Side Streams from Mussel and Herring Processing as Sources of Potential Income

    Get PDF
    The seafood industry generates significant amounts of process waters which can generate value upon recovery of their nutrients. Process waters from the herring marination chain and cooking of mussels were here characterized in terms of crude composition, volatile compounds, and nutritional and potentially toxic elements. Protein and total fatty acid contents of herring refrigerated sea water (RSW) reached 3 and 0.14 g/L, respectively, while herring presalting brine (13%) reached 16.3 g/L protein and 0.77 g/L total fatty acid. Among three herring marination brines vinegar brine (VMB), spice brine (SPB), and salt brine (SMB), SPB reached the highest protein (39 g/L) and fatty acids (3.0 g/L), whereas SMB and VMB at the most had 14 and 21 g protein/L, respectively, and 0.6 and 9.9 g fatty acids/L, respectively. Essential amino acid (EAA) in marination brines accounted for up to 59% of total amino acid (TAA). From mussel processing, cooking juice had more protein (14-23 g/L) than the rest of the process waters, and in all water types, EAA reached up to 42% of TAA. For all process waters, the most abundant nutritional elements were Na, K, P, Ca, and Se. The content of all potentially toxic elements was mostly below LOD, except for As which ranged from 0.07 to 1.07 mg/kg among all tested waters. Our findings shed light on liquid seafood side streams as untapped resources of nutrients which can be valorized into food/feed products

    Biochemical Characterization and Storage Stability of Process Waters from Industrial Shrimp Production

    Get PDF
    Shrimp boiling water (SBW) and shrimp peeling water (SPW), generated during shrimp processing, were characterized in terms of crude composition, volatile compounds, as well as nutritional and potentially toxic elements over a 13 month sampling period. The storage stability of both waters was also evaluated. Results showed that SBW contained on median 14.8 g/L protein and 2.2 g/L total fatty acids with up to 50% comprising eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Astaxanthin esters, which dominated the total astaxanthin, were 2.8 mg/L on median. SPW, on the other hand, contained on median 1.0 g/L of protein, 0.21 g/L of total fatty acids, and 1.2 mg/L astaxanthin esters. For both side-streams, essential amino acids were up to 50% of total amino acids. For SBW and SPW, the most abundant nutritional elements were Na, K, P, Ca, Cu, and Zn. The contents of all potentially toxic elements were below the detection limits, except for As. SBW was more stable at 4 \ub0C compared to SPW as shown, e.g., by thiobarbituric acid reactive substances and relative changes in total volatile basic nitrogen. The extensive compositional mapping of SBW/SPW provides crucial knowledge necessary in the exploitation and value-adding of such side-streams into food or feed products

    IMEP-32: Determination of Inorganic Arsenic in Animal Feed of Marine Origin: A Collaborative Trial Report

    Get PDF
    A collaborative study, IMEP-32, was conducted in accordance with international protocols to determine the performance characteristics of an analytical method for the determination of inorganic arsenic in animal feed of marine origin. The method will support the implementation of Directive No 2002/32/EC of the European Parliament and the Council on undesirable substances in animal feed where it is indicated that "Upon request of the competent authorities, the responsible operator must perform an analysis to demonstrate that the content of inorganic arsenic is lower than 2 ppm". The method is based on solid phase extraction (SPE) separation of inorganic arsenic from organoarsenic compounds followed by detection with hydride generation atomic absorption spectrometry (HG-AAS). The collaborative study investigated different types of samples of marine origin, including complete feed (unspiked and spiked), fish meal (unspiked and spiked), fish fillet (spiked) and a lobster hepatopancreas (unspiked). In total seven samples were investigated within the concentration range of 0.07 – 2.6 mg kg-1. The test samples were dispatched to 23 laboratories in 12 different countries. Nineteen participants reported results. The performance characteristics are presented in this report. All method performance characteristics obtained in the frame of this collaborative trial indicates that the proposed SPE-HG-AAS standard method is fit for the intended analytical purpose.JRC.D.6-Food Safety and Qualit

    Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Engineered nanoparticles are smaller than 100 nm and designed to improve or achieve new physico-chemical properties. Consequently, also toxicological properties may change compared to the parent compound. We examined developmental and neurobehavioral effects following maternal exposure to a nanoparticulate UV-filter (UV-titan L181).</p> <p>Methods</p> <p>Time-mated mice (C57BL/6BomTac) were exposed by inhalation 1h/day to 42 mg/m<sup>3 </sup>aerosolized powder (1.7·10<sup>6 </sup>n/cm<sup>3</sup>; peak-size: 97 nm) on gestation days 8-18. Endpoints included: maternal lung inflammation; gestational and litter parameters; offspring neurofunction and fertility. Physicochemical particle properties were determined to provide information on specific exposure and deposition.</p> <p>Results</p> <p>Particles consisted of mainly elongated rutile titanium dioxide (TiO<sub>2</sub>) with an average crystallite size of 21 nm, modified with Al, Si and Zr, and coated with polyalcohols. In exposed adult mice, 38 mg Ti/kg was detected in the lungs on day 5 and differential cell counts of bronchoalveolar lavage fluid revealed lung inflammation 5 and 26-27 days following exposure termination, relative to control mice. As young adults, prenatally exposed offspring tended to avoid the central zone of the open field and exposed female offspring displayed enhanced prepulse inhibition. Cognitive function was unaffected (Morris water maze test).</p> <p>Conclusion</p> <p>Inhalation exposure to nano-sized UV Titan dusts induced long term lung inflammation in time-mated adult female mice. Gestationally exposed offspring displayed moderate neurobehavioral alterations. The results are discussed in the light of the observed particle size distribution in the exposure atmosphere and the potential pathways by which nanoparticles may impart changes in fetal development.</p
    • …
    corecore