6 research outputs found

    Injury severity and serum amyloid A correlate with plasma oxidation-reduction potential in multi-trauma patients: a retrospective analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In critical injury, the occurrence of increased oxidative stress or a reduced antioxidant status has been observed. The purpose of this study was to correlate the degree of oxidative stress, by measuring the oxidation-reduction potential (ORP) of plasma in the critically injured, with injury severity and serum amyloid A (SAA) levels.</p> <p>Methods</p> <p>A total of 140 subjects were included in this retrospective study comprising 3 groups: healthy volunteers (N = 21), mild to moderate trauma (ISS < 16, N = 41), and severe trauma (ISS ≥ 16, N = 78). For the trauma groups, plasma was collected on an almost daily basis during the course of hospitalization. ORP analysis was performed using a microelectrode, and ORP maxima were recorded for the trauma groups. SAA, a sensitive marker of inflammation in critical injury, was measured by liquid chromatography/mass spectrometry.</p> <p>Results</p> <p>ORP maxima were reached on day 3 (± 0.4 SEM) and day 5 (± 0.5 SEM) for the ISS < 16 and ISS ≥ 16 groups, respectively. ORP maxima were significantly higher in the ISS < 16 (-14.5 mV ± 2.5 SEM) and ISS ≥ 16 groups (-1.1 mV ± 2.3 SEM) compared to controls (-34.2 mV ± 2.6 SEM). Also, ORP maxima were significantly different between the trauma groups. SAA was significantly elevated in the ISS ≥ 16 group on the ORP maxima day compared to controls and the ISS < 16 group.</p> <p>Conclusion</p> <p>The results suggest the presence of an oxidative environment in the plasma of the critically injured as measured by ORP. More importantly, ORP can differentiate the degree of oxidative stress based on the severity of the trauma and degree of inflammation.</p

    Phthalate esters used as plasticizers in packed red blood cell storage bags may lead to progressive toxin exposure and the release of pro-inflammatory cytokines

    Get PDF
    Phthalate esters (PE's) are plasticizers used to soften PVC-based medical devices. PE's are the most abundant man-made pollutants and increase the risk of developing an allergic respiratory disease or a malignancy. The leaching of PE's in donated packed red blood cells (PRBC) during storage was assessed. PRBC transfusion bags containing CPD/AS-1 (ADSOL) buffer were analyzed. Samples were collected on storage day 1 and day 42. Two PE's, di-(2-ethylhexyl) phthalate (DEHP) and mono-(2-ethylhexyl) phthalate (MEHP), were measured by liquid chromatography coupled to mass spectrometry (LCMS). Interleukin-8 (IL-8) was measured by standard ELISA techniques. DEHP significantly increased from 34.3 µM (±20.0 SD) on day 1 to 433.2 µM (±131.2 SD) on day 42, a 12.6-fold increase. Similarly, MEHP significantly increased from 3.7 µM (±2.8 SD) on day 1 to 74.0 µM (±19.1 SD) on day 42, a 20.2-fold increase. Also, DEHP and MEHP increased the release of IL-8 from human umbilical vein endothelial cells (HUVEC). The transfusion of older units of PRBC could lead to an accumulation of PE's possibly resulting in inflammation and other effects. This accumulation could be exacerbated due to the decreased metabolism of PE's since trauma patients have a lower esterase activity, the enzymes responsible for metabolizing PE's. The effect of oxidative stress caused by PE's is discussed as a potential mechanism for increases in inflammation caused by older units of PRBC

    Oxidation-Reduction Potential as a Biomarker for Severity and Acute Outcome in Traumatic Brain Injury

    No full text
    There are few reliable markers for assessing traumatic brain injury (TBI). Elevated levels of oxidative stress have been observed in TBI patients. We hypothesized that oxidation-reduction potential (ORP) could be a potent biomarker in TBI. Two types of ORP were measured in patient plasma samples: the static state of oxidative stress (sORP) and capacity for induced oxidative stress (icORP). Differences in ORP values as a function of time after injury, severity, and hospital discharge were compared using ANOVAs with significance at p≤0.05. Logit regression analyses were used to predict acute outcome comparing ORP, Injury Severity Score (ISS), Abbreviated Injury Scale (AIS), and Glasgow Coma Scale (GCS). Antioxidant capacity (icORP) on day 4 was prognostic for acute outcomes (p<0.05). An odds ratio of 4.08 was associated with poor acute outcome when icORP > 7.25 μC. IcORP was a better predictor than ISS, AIS, or GCS scores. sORP increased in those with the highest ISS values (p<0.05). Based on these findings ORP is useful biomarker for severity and acute outcome in TBI patients. Changes in ORP values on day 4 after injury were the most prognostic, suggesting that patients’ response to brain injury over time is a factor that determines outcome
    corecore