458 research outputs found

    Nuclear spin relaxation induced by a mechanical resonator

    Full text link
    We report on measurements of the spin lifetime of nuclear spins strongly coupled to a micromechanical cantilever as used in magnetic resonance force microscopy. We find that the rotating-frame correlation time of the statistical nuclear polarization is set by the magneto-mechanical noise originating from the thermal motion of the cantilever. Evidence is based on the effect of three parameters: (1) the magnetic field gradient (the coupling strength), (2) the Rabi frequency of the spins (the transition energy), and (3) the temperature of the low-frequency mechanical modes. Experimental results are compared to relaxation rates calculated from the spectral density of the magneto-mechanical noise.Comment: 4 pages, 4 figure

    Quantum versus classical hyperfine-induced dynamics in a quantum dot

    Full text link
    In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t<\tau_c, after which they differ markedly.Comment: 6 pages, 1 figure, accepted for publication in the Journal of Applied Physics (ICPS06 conference proceedings); v2: updated references, final published versio

    Phenomenological noise model for superconducting qubits: two-state fluctuators and 1=f noise

    Full text link
    We present a general phenomenological model for superconducting qubits subject to noise produced by two-state fluctuators whose couplings to the qubit are all roughly the same. In flux qubit experiments where the working point can be varied, it is possible to extract both the form of the noise spectrum and the number of fluctuators. We find that the noise has a broad spectrum consistent with 1=f noise and that the number of fluctuators with slow switching rates is surprisingly small: less than 100. If the fluctuators are interpreted as unpaired surface spins, then the size of their magnetic moments is surprisingly large.Comment: 7 pages, 2 figures, 1 tabl

    NMR Evidence for Charge Inhomogeneity in Stripe Ordered La_{1.8-x}Eu_{0.2}Sr_{x}CuO_4

    Full text link
    We report ^{17}O Nuclear Magnetic Resonance (NMR) results in the stripe ordered La_{1.8-x}Eu_{0.2}Sr_{x}CuO_4 system. Below a temperature T_q ~ 80K, the local electric field gradient (EFG) and the absolute intensity of the NMR signal of the planar O site exhibit a dramatic decrease. We interpret these results as microscopic evidence for a spatially inhomogeneous charge distribution, where the NMR signal from O sites in the domain walls of the spin density modulation are wiped out due to large hyperfine fields, and the remaining signal arises from the intervening Mott insulating regions.Comment: 4 pages, to appear in Phys. Rev. Let

    Enhanced thermal stability and spin-lattice relaxation rate of N@C60 inside carbon nanotubes

    Full text link
    We studied the temperature stability of the endohedral fullerene molecule, N@C60, inside single-wall carbon nanotubes using electron spin resonance spectroscopy. We found that the nitrogen escapes at higher temperatures in the encapsulated material as compared to its pristine, crystalline form. The temperature dependent spin-lattice relaxation time, T_1, of the encapsulated molecule is significantly shorter than that of the crystalline material, which is explained by the interaction of the nitrogen spin with the conduction electrons of the nanotubes.Comment: 5 pages, 4 figures, 1 tabl

    Rabi oscillations of a qubit coupled to a two-level system

    Full text link
    The problem of Rabi oscillations in a qubit coupled to a fluctuator and in contact with a heath bath is considered. A scheme is developed for taking into account both phase and energy relaxation in a phenomenological way, while taking full account of the quantum dynamics of the four-level system subject to a driving AC field. Significant suppression of the Rabi oscillations is found when the qubit and fluctuator are close to resonance. The effect of the fluctuator state on the read-out signal is discussed. This effect is shown to modify the observed signal significantly. This may be relevant to recent experiments by Simmonds et al. [Phys. Rev. Lett. 93, 077003 (2004)].Comment: 4 pages, 4 figure

    On the sensitivity of condensed-matter P- and T-violation experiments

    Full text link
    Experiments searching for parity- and time-reversal-invariance-violating effects that rely on measuring magnetization of a condensed-matter sample induced by application of an electric field are considered. A limit on statistical sensitivity arises due to random fluctuations of the spins in the sample. The scaling of this limit with the number of spins and their relaxation time is derived. Application to an experiment searching for nuclear Schiff moment in a ferroelectric is discussed.Comment: 6 pages, no figure

    Collective Decoherence of Nuclear Spin Clusters

    Full text link
    The problem of dipole-dipole decoherence of nuclear spins is considered for strongly entangled spin cluster. Our results show that its dynamics can be described as the decoherence due to interaction with a composite bath consisting of fully correlated and uncorrelated parts. The correlated term causes the slower decay of coherence at larger times. The decoherence rate scales up as a square root of the number of spins giving the linear scaling of the resulting error. Our theory is consistent with recent experiment reported in decoherence of correlated spin clusters.Comment: 4 pages, 4 figure

    Randomized benchmarking and process tomography for gate errors in a solid-state qubit

    Full text link
    We present measurements of single-qubit gate errors for a superconducting qubit. Results from quantum process tomography and randomized benchmarking are compared with gate errors obtained from a double pi pulse experiment. Randomized benchmarking reveals a minimum average gate error of 1.1+/-0.3% and a simple exponential dependence of fidelity on the number of gates. It shows that the limits on gate fidelity are primarily imposed by qubit decoherence, in agreement with theory.Comment: 4 pages, 4 figures, plus supplementary materia

    Breakdown of the Korringa Law of Nuclear Spin Relaxation in Metallic GaAs

    Full text link
    We present nuclear spin relaxation measurements in GaAs epilayers using a new pump-probe technique in all-electrical, lateral spin-valve devices. The measured T1 times agree very well with NMR data available for T > 1 K. However, the nuclear spin relaxation rate clearly deviates from the well-established Korringa law expected in metallic samples and follows a sub-linear temperature dependence 1/T1 ~ T^0.6 for 0.1 K < T < 10 K. Further, we investigate nuclear spin inhomogeneities.Comment: 5 pages, 4 (color) figures. arXiv admin note: text overlap with arXiv:1109.633
    • …
    corecore