5 research outputs found

    The combined effect of branch position, temperature, and VPD on gas exchange and water-use efficiency of Norway spruce

    Get PDF
    The impact of climate change on the physiological processes of Norway spruce in Central Europe is a significant concern. The increased temperature and evaporative demand associated with climate change may negatively affect its photosynthesis and carbon-water balance. This study tests the combined effect of branch position, temperature (T) and water vapour pressure deficit (VPD) on net photosynthetic rate (PN_N), water vapour stomatal conductance (gs_s), and intrinsic water-use efficiency (WUEi_i) of Norway spruce. More than 11 000 gas-exchange measurements during the summer of 2018 revealed that branch position significantly affects gas exchange and WUEi_i of juvenile Norway spruce trees. Northern branches showed on average 21% increased PN_N, 35% higher gs_s, and 8% lower WUEi_i compared to the southern branches (across T and VPD conditions). The PN_N and gs_s differences between the branches were temperature- and VPD-dependent. We observed the negative impact of raising temperature on gas exchange and WUEi_i for both treatments, with a 40°C threshold causing a rapid decline in WUEi_i. Variability of the southern branches\u27 WUEi_i at 42°C was abruptly increased due to the decoupling of PN_N and gs_s (low PN_N, high gs_s). Surprisingly, raising VPD showed no significant impact on WUEi_i of Norway spruce. The results of this study provide necessary information for upscaling and process-based modelling of whole-crown gas exchange. Moreover, experimental studies of gas exchange should take into consideration the branch position effect to prevent possible bias errors

    The Role of Provenance for the Projected Growth of Juvenile European Beech under Climate Change

    Get PDF
    European beech is one of the most common tree species in Europe and is generally suggested to play even more of a prominent role in forestry in the future. It seems to have the potential to partially replace Norway spruce, as it is less sensitive to expected warmer and drier conditions. It is, however, not well known in which regions these new plantings would be particularly favourable and if specific provenances may be better adapted to the new conditions than others. Therefore, we estimated the potential early height growth under climate conditions in 2040–2060 for 20 beech provenances across a region covering the Czech Republic and Slovakia. This Central European region is expected to experience considerably drier and warmer conditions in the future. For this exercise, we implemented a new neural network model developed from height growth information obtained from the open-access BeechCOSTe52 database. The simulations are driven by past and future climate data obtained from the WorldClim database of historical climate data and future climate projections. Simulations revealed that provenances originating from drier regions performed on average significantly better than those from regions with good water supply. Moreover, provenances originating from drier regions had a particularly large advantage in the relatively arid regions of Central Czechia and Southern Slovakia. We can also confirm that all provenances showed a high phenotypic plasticity of height growth across the whole investigated region

    Defense strategies and associated phytohormonal regulation in Brassica plants in response to chewing and sap-sucking insects

    No full text
    Plants have evolved distinct defense strategies in response to a diverse range of chewing and sucking insect herbivory. While chewing insect herbivores, exemplified by caterpillars and beetles, cause visible tissue damage and induce jasmonic acid (JA)-mediated defense responses, sucking insects, such as aphids and whiteflies, delicately tap into the phloem sap and elicit salicylic acid (SA)-mediated defense responses. This review aims to highlight the specificity of defense strategies in Brassica plants and associated underlying molecular mechanisms when challenged by herbivorous insects from different feeding guilds (i.e., chewing and sucking insects). To establish such an understanding in Brassica plants, the typical defense responses were categorized into physical, chemical, and metabolic adjustments. Further, the impact of contrasting feeding patterns on Brassica is discussed in context to unique biochemical and molecular modus operandi that governs the resistance against chewing and sucking insect pests. Grasping these interactions is crucial to developing innovative and targeted pest management approaches to ensure ecosystem sustainability and Brassica productivity

    Inter-provenance variability and phenotypic plasticity of wood and leaf traits related to hydraulic safety and efficiency in seven European beech (Fagus sylvatica L.) provenances differing in yield

    No full text
    Abstract Key message Seven European beech provenances differing largely in growth performance were grown at two common garden sites in Germany and Slovakia. The intra-specific variability of most traits was explained more by phenotypic plasticity than inter-provenance variability, and efficiency-related traits showed a higher phenotypic plasticity than safety-related traits. Context To maintain climate-resilient future forests, replicated common-garden experiments are suited for developing assisted migration strategies for key tree species. Aims We analysed the magnitude of inter-provenance variability and phenotypic plasticity for 12 functional traits of European beech (Fagus sylvatica L.) and analysed whether the climate at the place of origin left an imprint. Moreover, we asked whether growth is unrelated to xylem safety and to what extent the foliar, xylem and growth-related traits are coordinated. Methods Terminal branches were collected from 19-year-old and 22-year-old trees of seven European beech provenances planted at two common garden sites in Germany and Slovakia, respectively. Three hydraulic, three wood anatomical and four foliar traits were measured and related to two growth-related variables. Results At the two sites, the same pair of provenances showed the highest and lowest growth. Nevertheless, a high degree of phenotypic plasticity was observed, as all traits differed significantly between sites after accounting for provenance effects, with hydraulic safety-related traits showing the lowest and efficiency-related traits the highest plasticity. There was no evidence for inter-provenance variability in xylem embolism resistance (P 50) or the foliar carbon isotope signature (δ13C), a proxy for intrinsic water use efficiency (iWUE), and both were unrelated to growth. P 50 was positively correlated with the lumen-to-sapwood area ratio and vessel density. Conclusions Because of the lacking trade-off between embolism resistance and growth, highly productive provenances can be selected without reducing the drought tolerance of the branch xylem. However, as xylem safety is only one element of a trees’ drought response, it may be beneficial to select provenances with other more conservative drought adaptations such as smaller vessel lumen areas for increasing xylem safety and small supported total leaf areas for reduction of total transpiration

    The Role of Provenance for the Projected Growth of Juvenile European Beech under Climate Change

    No full text
    European beech is one of the most common tree species in Europe and is generally suggested to play even more of a prominent role in forestry in the future. It seems to have the potential to partially replace Norway spruce, as it is less sensitive to expected warmer and drier conditions. It is, however, not well known in which regions these new plantings would be particularly favourable and if specific provenances may be better adapted to the new conditions than others. Therefore, we estimated the potential early height growth under climate conditions in 2040–2060 for 20 beech provenances across a region covering the Czech Republic and Slovakia. This Central European region is expected to experience considerably drier and warmer conditions in the future. For this exercise, we implemented a new neural network model developed from height growth information obtained from the open-access BeechCOSTe52 database. The simulations are driven by past and future climate data obtained from the WorldClim database of historical climate data and future climate projections. Simulations revealed that provenances originating from drier regions performed on average significantly better than those from regions with good water supply. Moreover, provenances originating from drier regions had a particularly large advantage in the relatively arid regions of Central Czechia and Southern Slovakia. We can also confirm that all provenances showed a high phenotypic plasticity of height growth across the whole investigated region
    corecore