6 research outputs found

    Lithium carbonate in amyotrophic lateral sclerosis patients homozygous for the C-allele at SNP rs12608932 in UNC13A: protocol for a confirmatory, randomized, group-sequential, event-driven, double-blind, placebo-controlled trial

    Full text link
    BackgroundGiven the large genetic heterogeneity in amyotrophic lateral sclerosis (ALS), it seems likely that genetic subgroups may benefit differently from treatment. An exploratory meta-analysis identified that patients homozygous for the C-allele at SNP rs12608932, a single nucleotide polymorphism in the gene UNC13A, had a statistically significant survival benefit when treated with lithium carbonate. We aim to confirm the efficacy of lithium carbonate on the time to death or respiratory insufficiency in patients with ALS homozygous for the C-allele at SNP rs12608932 in UNC13A. MethodsA randomized, group-sequential, event-driven, double-blind, placebo-controlled trial will be conducted in 15 sites across Europe and Australia. Patients will be genotyped for UNC13A; those homozygous for the C-allele at SNP rs12608932 will be eligible. Patients must have a diagnosis of ALS according to the revised El Escorial criteria, and a TRICALS risk-profile score between -6.0 and -2.0. An expected number of 1200 patients will be screened in order to enroll a target sample size of 171 patients. Patients will be randomly allocated in a 2:1 ratio to lithium carbonate or matching placebo, and treated for a maximum duration of 24 months. The primary endpoint is the time to death or respiratory insufficiency, whichever occurs first. Key secondary endpoints include functional decline, respiratory function, quality of life, tolerability, and safety. An interim analysis for futility and efficacy will be conducted after the occurrence of 41 events. DiscussionLithium carbonate has been proven to be safe and well-tolerated in patients with ALS. Given the favorable safety profile, the potential benefits are considered to outweigh the burden and risks associated with study participation. This study may provide conclusive evidence about the life-prolonging potential of lithium carbonate in a genetic ALS subgroup

    Sodium-potassium pump assessment by submaximal electrical nerve stimulation

    No full text
    OBJECTIVE: Sodium-potassium pump dysfunction in peripheral nerve is usually assessed by determining axonal hyperpolarization following maximal voluntary contraction (MVC) or maximal electrical nerve stimulation. As MVC may be unreliable and maximal electrical stimulation too painful, we assessed if hyperpolarization can also be induced by submaximal electrical nerve stimulation. METHODS: In 8 healthy volunteers different submaximal electrical stimulus trains were given to the median nerve at the wrist, followed by 5 min assessment of thresholds for compound muscle action potentials of 20%, 40% or 60% of maximal. RESULTS: Threshold increase after submaximal electrical nerve stimulation was most prominent after an 8 Hz train of at least 5 min duration evoking submaximal CMAPs of 60%. It induced minimal discomfort and was not painful. Threshold increase after MVC was not significantly higher than this stimulus train. CONCLUSIONS: Submaximal electrical stimulation evokes activity dependent hyperpolarization in healthy test subjects without causing significant discomfort. SIGNIFICANCE: Sodium-potassium pump function may be assessed using submaximal electrical stimulation

    Sodium-potassium pump assessment by submaximal electrical nerve stimulation

    No full text
    OBJECTIVE: Sodium-potassium pump dysfunction in peripheral nerve is usually assessed by determining axonal hyperpolarization following maximal voluntary contraction (MVC) or maximal electrical nerve stimulation. As MVC may be unreliable and maximal electrical stimulation too painful, we assessed if hyperpolarization can also be induced by submaximal electrical nerve stimulation. METHODS: In 8 healthy volunteers different submaximal electrical stimulus trains were given to the median nerve at the wrist, followed by 5 min assessment of thresholds for compound muscle action potentials of 20%, 40% or 60% of maximal. RESULTS: Threshold increase after submaximal electrical nerve stimulation was most prominent after an 8 Hz train of at least 5 min duration evoking submaximal CMAPs of 60%. It induced minimal discomfort and was not painful. Threshold increase after MVC was not significantly higher than this stimulus train. CONCLUSIONS: Submaximal electrical stimulation evokes activity dependent hyperpolarization in healthy test subjects without causing significant discomfort. SIGNIFICANCE: Sodium-potassium pump function may be assessed using submaximal electrical stimulation

    Warming nerves for excitability testing

    No full text
    Introduction: The aim of this study was to find the best method of warming the median nerve before excitability testing to a standard temperature. Methods: In 5 healthy subjects, the forearm and hand were warmed for 1 h to 37°C by infrared lamp, water blanket, or water bath. Recordings were performed before and during warming every 10 min. Excitability indices were fitted by exponential relations, thereby calculating the time needed to reach 95% of their asymptotic end value. Results: Distal motor latency, refractory period, and superexcitability at 10 ms changed exponentially with time. Warming by water bath took the shortest time (24 min); this was followed by warming by infrared lamp (34 min) and water blanket (35 min). Conclusions: Warming by water bath is the quickest way. The other methods took only moderately more time. Future studies need to specify both warming method and warming time before excitability testing. Muscle Nerve, 2019
    corecore