31 research outputs found

    Whole Exome Sequencing in Multi-Incident Families Identifies Novel Candidate Genes for Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is a degenerative disease of the central nervous system in which auto-immunity-induced demyelination occurs. MS is thought to be caused by a complex interplay of environmental and genetic risk factors. While most genetic studies have focused on identifying common genetic variants for MS through genome-wide association studies, the objective of the present study was to identify rare genetic variants contributing to MS susceptibility. We used whole exome sequencing (WES) followed by co-segregation analyses in nine multi-incident families with two to four affected individuals. WES was performed in 31 family members with and without MS. After applying a suite of selection criteria, co-segregation analyses for a number of rare variants selected from the WES results were performed, adding 24 family members. This approach resulted in 12 exonic rare variants that showed acceptable co-segregation with MS within the nine families, implicating the genes MBP, PLK1, MECP2, MTMR7, TOX3, CPT1A, SORCS1, TRIM66, ITPR3, TTC28, CACNA1F, and PRAM1. Of these, three genes (MBP, MECP2, and CPT1A) have been previously reported as carrying MS-related rare variants. Six additional genes (MTMR7, TOX3, SORCS1, ITPR3, TTC28, and PRAM1) have also been implicated in MS through common genetic variants. The proteins encoded by all twelve genes containing rare variants interact in a molecular framework that points to biological processes involved in (de-/re-)myelination and auto-immunity. Our approach provides clues to possible molecular mechanisms underlying MS that should be studied further in cellular and/or animal models

    Molecular profiling of cervical cancer progression

    Get PDF
    Most cancer patients die of metastatic or recurrent disease, hence the importance to identify target genes upregulated in these lesions. Although a variety of gene signatures associated with metastasis or poor prognosis have been identified in various cancer types, it remains a critical problem to identify key genes as candidate therapeutic targets in metastatic or recurrent cancer. The aim of our study was to identify genes consistently upregulated in both lymph node micrometastases and recurrent tumours compared to matched primary tumours in human cervical cancer. Taqman Low-Density Arrays were used to analyse matched tumour samples, obtained after laser-capture microdissection of tumour cell islands for the expression of 96 genes known to be involved in tumour progression. Immunohistochemistry was performed for a panel of up- and downregulated genes. In lymph node micrometastases, most genes were downregulated or showed expressions equal to the levels found in primary tumours. In more than 50% of lymph node micrometastases studied, eight genes (AKT, BCL2, CSFR1, EGFR1, FGF1, MMP3, MMP9 and TGF-Ξ²) were upregulated at least two-fold. Some of these genes (AKT and MMP3) are key regulators of epithelial–mesenchymal transition in cancer. In recurrent tumours, almost all genes were upregulated when compared to the expression profiles of the matched primary tumours, possibly reflecting their aggressive biological behaviour. The two genes showing a consistent downregulated expression in almost all lymph node metastases and recurrent tumours were BAX and APC. As treatment strategies are very limited for metastatic and recurrent cervical cancer, the upregulated genes identified in this study are potential targets for new molecular treatment strategies in metastatic or recurrent cervical cancer

    Immune Cell Recruitment and Cell-Based System for Cancer Therapy

    Get PDF
    Immune cells, such as cytotoxic T lymphocytes, natural killer cells, B cells, and dendritic cells, have a central role in cancer immunotherapy. Conventional studies of cancer immunotherapy have focused mainly on the search for an efficient means to prime/activate tumor-associated antigen-specific immunity. A systematic understanding of the molecular basis of the trafficking and biodistribution of immune cells, however, is important for the development of more efficacious cancer immunotherapies. It is well established that the basis and premise of immunotherapy is the accumulation of effective immune cells in tumor tissues. Therefore, it is crucial to control the distribution of immune cells to optimize cancer immunotherapy. Recent characterization of various chemokines and chemokine receptors in the immune system has increased our knowledge of the regulatory mechanisms of the immune response and tolerance based on immune cell localization. Here, we review the immune cell recruitment and cell-based systems that can potentially control the systemic pharmacokinetics of immune cells and, in particular, focus on cell migrating molecules, i.e., chemokines, and their receptors, and their use in cancer immunotherapy

    The chemokine network and infiltrating inflammatory cells in cervical cancer

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Voorkomen van een financiele 'valkuil'.

    No full text

    Consumption of a Polyphenol-Rich Grape-Wine Extract Lowers Ambulatory Blood Pressure in Mildly Hypertensive Subjects

    No full text
    Polyphenols in grape and wine have been suggested to contribute to the cardiovascular health benefits of the Mediterranean lifestyle. The reported effects of grape products on blood pressure (BP) remain, however, equivocal. In a double-blind placebo controlled crossover study, the effect of two grape extracts on BP and vascular function was assessed in 60 untreated, mildly hypertensive subjects after four weeks intervention. Both extracts (grape-red wine and grape alone) had high concentrations of anthocyanins and flavonols, but the grape alone was relatively poor in catechins and procyanidins. Parameters measured included ambulatory and office BP, flow-mediated vasodilation, arterial distensibility, platelet function and plasma lipoproteins. Results showed that 24-hour ambulatory systolic/diastolic BPs were significantly lower in the grape-wine extract intervention (135.9 Β± 1.3/84.7 Β± 0.8 mmHg; mean Β± SEM) compared to placebo (138.9 Β± 1.3/86.6 Β± 1.2 mmHg), predominantly during daytime. Plasma concentrations of the vasoconstrictor endothelin-1 decreased by 10%, but other measures of vascular function were not affected. Grape juice extract alone had no effect on BP or any measures of vascular function. Polyphenol-rich food products, and may be specifically catechins and procyanidins, may thus help sustain a healthy BP and contribute to the healthy Mediterranean lifestyle

    Consumption of a polyphenol-rich grape-wine extract lowers ambulatory blood pressure in mildly hypertensive subjects

    No full text
    Polyphenols in grape and wine have been suggested to contribute to the cardiovascular health benefits of the Mediterranean lifestyle. The reported effects of grape products on blood pressure (BP) remain, however, equivocal. In a double-blind placebo controlled crossover study, the effect of two grape extracts on BP and vascular function was assessed in 60 untreated, mildly hypertensive subjects after four weeks intervention. Both extracts (grape-red wine and grape alone) had high concentrations of anthocyanins and flavonols, but the grape alone was relatively poor in catechins and procyanidins. Parameters measured included ambulatory and office BP, flow-mediated vasodilation, arterial distensibility, platelet function and plasma lipoproteins. Results showed that 24-hour ambulatory systolic/diastolic BPs were significantly lower in the grape-wine extract intervention (135.9 Β± 1.3/84.7 Β± 0.8 mmHg; mean Β± SEM) compared to placebo (138.9 Β± 1.3/86.6 Β± 1.2 mmHg), predominantly during daytime. Plasma concentrations of the vasoconstrictor endothelin-1 decreased by 10%, but other measures of vascular function were not affected. Grape juice extract alone had no effect on BP or any measures of vascular function. Polyphenol-rich food products, and may be specifically catechins and procyanidins, may thus help sustain a healthy BP and contribute to the healthy Mediterranean lifestyl

    Detecting multiple sclerosis via breath analysis using an eNose, a pilot study

    Get PDF
    In the present study we investigated whether multiple sclerosis (MS) can be detected via exhaled breath analysis using an electronic nose (eNose). The AeonoseTM (an eNose, The eNose Company, Zutphen, the Netherlands) is a diagnostic test device to detect patterns of volatile organic compounds in exhaled breath. We evaluated whether the AeonoseTM can make a distinction between the breath patterns of patients with MS and healthy control subjects. In this mono-center, prospective, non-invasive study, 124 subjects with a confirmed diagnosis of MS and 129 control subjects each breathed into the AeonoseTM for 5 min. Exhaled breath data was used to train an artificial neural network (ANN) predictive model. To investigate the influence of medication intake we created a second predictive model with a subgroup of MS patients without medication prescribed for MS. The ANN model based on the entire dataset was able to distinguish MS patients from healthy controls with a sensitivity of 0.75 (95% CI: 0.66-0.82) and specificity of 0.60 (0.51-0.69). The model created with the subgroup of MS patients not using medication and the healthy control subjects had a sensitivity of 0.93 (0.82-0.98) and a specificity of 0.74 (0.65-0.81). The study showed that the AeonoseTM is able to make a distinction between MS patients and healthy control subjects, and could potentially provide a quick screening test to assist in diagnosing MS. Further research is needed to determine whether the AeonoseTM is able to differentiate new MS patients from subjects who will not get the diagnosis
    corecore