9 research outputs found

    Discrete solitons in an array of quantum dots

    Full text link
    We develop a theory for the interaction of classical light fields with an a chain of coupled quantum dots (QDs), in the strong-coupling regime, taking into account the local-field effects. The QD chain is modeled by a one-dimensional (1D) periodic array of two-level quantum particles with tunnel coupling between adjacent ones. The local-field effect is taken into regard as QD depolarization in the Hartree-Fock-Bogoliubov approximation. The dynamics of the chain is described by a system of two discrete nonlinear Schr\"{o}dinger (DNLS) equations for local amplitudes of the probabilities of the ground and first excited states. The two equations are coupled by a cross-phase-modulation cubic terms, produced by the local-field action, and by linear terms too. In comparison with previously studied DNLS systems, an essentially new feature is a phase shift between the intersite-hopping constants in the two equations. By means of numerical solutions, we demonstrate that, in this QD chain, Rabi oscillations (RO) self-trap into stable bright\textit{\ Rabi solitons} or \textit{Rabi breathers}. Mobility of the solitons is considered too. The related behavior of observable quantities, such as energy, inversion, and electric-current density, is given a physical interpretation. The results apply to a realistic region of physical parameters.Comment: 12 pages, 10 figures, Phys. Rev. B, in pres

    Scattering of the near field of an electric dipole by a single-wall carbon nanotube

    Full text link
    The use of carbon nanotubes as optical probes for scanning near-field optical microscopy requires an understanding of their near-field response. As a first step in this direction, we investigated the lateral resolution of a carbon nanotube tip with respect to an ideal electric dipole representing an elementary detected object. A Fredholm integral equation of the first kind was formulated for the surface electric current density induced on a single-wall carbon nanotube (SWNT) by the electromagnetic field due to an arbitrarily oriented electric dipole located outside the SWNT. The response of the SWNT to the near field of a source electric dipole can be classified into two types, because surface-wave propagation occurs with (i) low damping at frequencies less than ~ 200-250 THz and (ii) high damping at higher frequencies. The interaction between the source electric dipole and the SWNT depends critically on their relative location and relative orientation, and shows evidence of the geometrical resonances of the SWNT in the low-frequency regime. These resonances disappear when the relaxation time of the SWNT is sufficiently low. The far-field radiation intensity is much higher when the source electric dipole is placed near an edge of SWNT than at the centroid of the SWNT. The use of an SWNT tip in scattering-type scanning near-field optical microscopy can deliver a resolution less than ~ 20 nm. Moreover, our study shows that the relative orientation and distance between the SWNT and the nanoscale dipole source can be detected.Comment: 23 pages, 16 figure

    Politika prisustva: Kako onlajn aktivnosti uobličavaju oflajn aktivizam

    Get PDF
    The author explores how the internet and the new media are changing the way that we communicate, act and think, individually and collectively, through the example of the Occupy Wall Street Movement. The author claims that The Occupy Movement, as a post-narrative project conceived in a digital environment, is less of a political activity, and more a new way of behavior for its members and for the society at large. Its focus on consensus building and its modus operandi are reflecting the principles of the Internet, web-organization and cooperation. Therefore, its success is not about achieving any particular political aim, or winning an election, but about the general acceptance of these values and their becoming part of a wider political agenda.Autor istražuje kako internet i novi mediji menjaju način na koji komuniciramo, delujemo i mislimo, pojedinačno ali i kolektivno, na primeru pokreta „Okupirajmo Volstrit“. Autor tvrdi da „Okupacija Volstrita“, kao postnarativni pokret nastao u digitalnom okruženju, manje predstavlja političku aktivnost a više novi normativni način ponašanja za svoje članove, ali i čitavo društvo. Njegova usmerenost ka izgradnji konsenzusa, kao i sam modus funkcionisanja, odražavaju principe interneta, mrežne organizacije i kolaboracije. Zato je njegov uspeh manje povezan sa ostvarivanjem nekog pojedinačnog cilja ili osvajanja vlasti na izborima, a više sa razmerom u kojoj će ove rednosti biti opšteusvojene i postati deo ukupne političke agende

    Theory of Edge Effects and Conductance for Applications in Graphene-Based Nanoantennas

    No full text
    In this paper, we present a theory of edge effects in graphene for its applications to nanoantennas in the THz, infrared, and visible frequency ranges. The novelty of the presented model is reflected in its self-consistency, which is reached due to the formulation in terms of dynamical conductance instead of ordinary surface conductivity. The physical model of edge effects is based on using the concept of the Dirac fermion and the Kubo approach. In contrast with earlier well-known and widely used models, the surface conductance becomes non-homogeneous and non-local. The numerical simulations of the spatial behavior of the surface conductance were performed in a wide range of values, known from the literature, for the graphene ribbon widths and electrochemical potential. It is shown that if the length exceeds 800 nm, our model agrees with the classical Drude conductivity model with a relatively high degree of accuracy. For rather short lengths, the conductance exhibits a new type of spatial oscillations, which are not present in the ordinary conductivity model. These oscillations modify the form of effective boundary conditions and integral equations for electromagnetic field at the surface of graphene-based antenna. The developed theory opens a new way for realizing electrically controlled nanoantennas by changing the electrochemical potential via gate voltage. The obtained results may be applicable for the design of different carbon-based nanodevices in modern quantum technologies

    Transmission-Line Model for Multiwall Carbon Nanotubes With Intershell Tunneling

    No full text
    The electromagnetic behavior of multiwall carbon nanotubes (MWCNTs), in the frequency range where only intraband transitions are allowed, depends on the combinations of different aspects: the number of effective conducting channels of each shell, the electron tunneling between adjacent shells, and the electromagnetic interaction between shells and the environment. This paper proposes a general transmission-line (TL) model for describing the propagation of electric signals along MWCNTs at microwave through terahertz frequencies that takes into account all these aspects. The dependence of the number of conducting channels of the single shell on the shell chirality and radius is described in the framework of the quasi-classical transport theory. The description of the intershell tunneling effects on the longitudinal transport of the p-electrons is carried on the basis of the density matrix formalism and Liouville's equation. The electromagnetic coupling between the shells and ground plane is described in the frame of the classical TL theory. The intershell tunneling qualitatively changes the form of the TL equations through the tunneling inductance and capacitance operators, which have to be added, respectively, in series to the (kinetic and magnetic) inductance matrix and in parallel to the (quantum and electrical) capacitance matrix. For carbon nanotube (CNT) lengths greater than 500 nm, the norm of the tunneling inductance operator is greater than 60% of the norm of the total inductance in the frequency range from gigahertz to terahertz. The tunneling inductance is responsible for a considerable coupling between the shells and gives rise to strong spatial dispersion. The model has been used to analyze the eigen-modes of a double-wall CNT above a ground plane. The intershell tunneling gives arise to strong anomalous dispersion in antisymmetrical modes
    corecore