208 research outputs found

    Particulate and solar radiation stable coating for spacecraft

    Get PDF
    A laminate thermal control coating for spacecraft comprising a layer of solar radiation stable film, a layer of particulate radiation stable film applied to the upper surface of the solar radiation stable film, and a layer of reflecting material applied to the lower surface of the solar radiation stable film was described. The coating experiences no increase in solar radiation absorptance (the proportion of radiant energy absorbed) upon exposure to particulate or solar radiation as the particulate radiation is substantially absorbed in the particulate radiation stable layer and the solar radiation partially absorbed by the particulate radiation stable layer is transmitted by the solar radiation stable film to the reflecting material which reflects it back through the laminate and into space

    Ultraviolet radiation effects

    Get PDF
    Solar ultraviolet testing was not developed which will provide highly accelerated (20 to 50X) exposures that correlate to flight test data. Additional studies are required to develop an exposure methodology which will assure that accelerated testing can be used for qualification of materials and coatings for long duration space flight. Some conclusions are listed: Solar UV radiation is present in all orbital environments; Solar UV does not change in flux with orbital altitude; UV radiation can degrade most coatings and polymeric films; Laboratory UV simulation methodology is needed for accelerated testing to 20 UV solar constants; Simulation of extreme UV (below 200 nm) is needed to evaluate requirements for EUV in solar simulation

    Effects of simulated space environment on Skylab parasol material

    Get PDF
    A material consisting of ripstop nylon bonded to the Mylar side of aluminized Mylar film was used to construct the first Skylab parasol. The mechanical properties of elongation and tensile strength and the radiative properties of solar absorptance and thermal emittance were measured before and after exposure to simulated solar radiation at intensities of 1.0 and 3.5 solar constants for exposure times as long as 947 hours or 3316 equivalent solar hours. The accelerated testing indicated more severe degradation than was experienced in the real-time test (1 solar constant). The results predicted that this material could have given satisfactory performance throughout the planned lifetime of the Skylab workshop

    Working group written presentation: Solar radiation

    Get PDF
    The members of the Solar Radiation Working Group arrived at two major solar radiation technology needs: (1) generation of a long term flight data base; and (2) development of a standardized UV testing methodology. The flight data base should include 1 to 5 year exposure of optical filters, windows, thermal control coatings, hardened coatings, polymeric films, and structural composites. The UV flux and wavelength distribution, as well as particulate radiation flux and energy, should be measured during this flight exposure. A standard testing methodology is needed to establish techniques for highly accelerated UV exposure which will correlate well with flight test data. Currently, UV can only be accelerated to about 3 solar constants and can correlate well with flight exposure data. With space missions to 30 years, acceleration rates of 30 to 100X are needed for efficient laboratory testing

    An analysis of LDEF-exposed silvered FEP teflon thermal blanket material

    Get PDF
    The characterization of selected silvered fluorinated ethylene propylene (FEP) teflon thermal blanket material which received 5 years and 9 months of exposure to the LEO environment on the Long Duration Exposure Facility is reported. X-ray photoelectron spectroscopy, infrared, and thermal analyses did not detect a significant change at the molecular level as the result of this exposure. However, various microscopic analyses revealed a roughening of the coating surface due to atomic oxygen erosion which resulted in some materials changing from specular reflectors of visible radiation to diffuse reflectors. The potential effect of silicon-containing molecular contamination on these materials is addressed

    A Method for Measuring the Spectral Normal Emittance in Air of A Variety of Materials Having Stable Emittance Characteristics

    Get PDF
    A method and apparatus is described for the measurement of spectral normal emittance in air of a variety of materials. The system permits measurements to be performed over a wavelength region of 1.0 through 15.0 microns and over a temperature range of 600F to 1,8000F with an accuracy of 5.0 percent. The advantages of this system are described. Results obtained by this system are compared with results reported by another observer using a different technique

    Evaluation of colorless polyimide film for thermal control coating applications

    Get PDF
    A series of essentially colorless aromatic polyimide films was synthesized and characterized with the objective of obtaining maximum optical transparency for applications in space. Optical transparency is a requirement for high performance polymeric films used in second surface mirror coatings on thermal control systems. The intensity in color of aromatic polyimide films was lowered by reducing the electronic interaction between chromophoric centers in the polymer molecular structure and by using highly purified monomers. The resulting lightly colored to colorless polyimide films were characterized by UV-visible and infrared spectroscopy before and after exposure to 300 equivalent solar hours UV irradiation and varying doses of 1 MeV electron irradiation. After irradiation, the films were found to be 2 to 2.5 times more transparent than commercial polyimide film of the same thickness

    LDEF thermal control coatings post-flight analysis

    Get PDF
    The NASA Long Duration Exposure Facility (LDEF) provided a unique flight opportunity for conducting experiments in space and return of these experiments to Earth for laboratory evaluation. The results of one of these experiments, S0010, Exposure of Spacecraft Coatings, in which selected spacecraft thermal control coatings were exposed to the low-Earth orbital (LEO) environment on LDEF are reported. The objective of the experiment is to evaluate the response of thermal control coatings to LEO exposure, which includes atomic oxygen, ultraviolet and particulate radiation, meteoroid and debris, vacuum, and temperature cycling

    Solar radiation

    Get PDF
    The effects of solar radiation in aerospace environments on aerospace systems are examined. It was concluded that most materials degrade to solar radiation. The information available on short term effects on materials provides a limited data base. Flight data on coating degradation seems to be confused by contamination. Other conclusions of data examination are listed

    High Temperature Adhesives for Bonding Kapton

    Get PDF
    Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/Kapton bondlines were monitored by thermomechanical analysis
    corecore