5 research outputs found

    Insights from the shell proteome : Biomineralization to adaptation

    Get PDF
    Acknowledgments This work was supported by funding from the CACHE (Calcium in a Changing Environment) initial training network (ITN) under the European Union Seventh Framework Programme, reference grant agreement number 605051. We acknowledge E. Dufour (UMR 7209, MNHN) for shell sample preparation. We thank G. Bolbach and L. Matheron (IBPS-FR3631, Paris) for proteomic analysis and discussionsPeer reviewedPublisher PD

    The little skate genome and the evolutionary emergence of wing-like fin appendages

    Get PDF
    Skates are cartilaginous fish whose novel body plan features remarkably enlarged wing-like pectoral fins that allow them to thrive in benthic environments. The molecular underpinnings of this unique trait, however, remain elusive. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins (gene expression, chromatin occupancy and three-dimensional (3D) conformation) we find skate-specific genomic rearrangements that alter the 3D regulatory landscape of genes involved in the planar cell polarity (PCP) pathway. Functional inhibition of PCP signaling resulted in marked reduction of anterior fin size, confirming this pathway as a major contributor of batoid fin morphology. We also identified a fin-specific enhancer that interacts with 3' HOX genes, consistent with the redeployment of Hox gene expression in anterior pectoral fins, and confirmed the potential of this element to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganizations and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait

    Phospholipid biosynthesis in mammalian cells

    No full text

    Synapse formation is enhanced by oral administration of uridine and DHA, the circulating precursors of brain phosphatides

    No full text

    1971 - 1974

    No full text
    corecore