75 research outputs found

    Experimental investigation of self coherent optical OFDM systems using fabry-perot filters for carrier extraction

    Get PDF
    We experimentally demonstrate self coherent optical OFDM transmission with IQ demultiplexing employing a Fabry-Perot-tunable filter for the extraction of the optical carrier. The performance is investigated and compared to a conventional CO-OFDM

    Low computational complexity mode division multiplexed OFDM transmission over 130 km of few mode fiber

    No full text
    We demonstrate 337.5-Gb/s MDM-8QAM-OFDM transmission over 130 km of FMF. This confirms that OFDM can significantly reduce the required DSP complexity to compensate for differential mode delay, a key step towards real-time MDM transmission

    10x224-Gb/s POLMUX-16QAM transmission over 656 km of large-Aeff PSCF with a special efficiency of 5.6 b/s/Hz

    Get PDF
    We demonstrate the successful transmission of 10 channels with 224-Gb/s POLMUX-16QAM modulation (28 GBaud) on a 37.5-GHz wavelength grid. Using large-Aeff pure-silica-core fibers we show a 656-km transmission distance with a spectral efficiency of 5.6 b/s/Hz. We report a back-to-back performance penalty of 3.5 dB compared to theoretical limits at the forward-error correction (FEC) limit (bit-error rate of 3.8·10-3), and a margin of 0.5 dB in Q-factor with respect to the FEC-limit after 656 km of transmission

    A comparison between SSMF and large-Aeff Pure-Silica core fiber for Ultra Long-Haul 100G transmission

    Get PDF
    We compare the transmission performance of 112-Gb/s POLMUX-QPSK modulation over large-Aeff Pure-Silica core fiber and SSMF using EDFA-only amplification. The higher nonlinear threshold of the large-Aeff Pure-Silica core fiber allows for a 55% increase in transmission distance. By using back-propagation an additional 10% increase is observed. In case spans with equal length for both fiber types and two splices per span only would have been used, resulting in a lower span loss for the large-Aeff Pure-Silica core fiber, the total increase grows to 85%

    Multimode EDFA performance in mode-division multiplexed transmission systems

    Full text link
    We report a detailed study on the system performance of a two-mode group EDFA. In particular we quantify how the gain spectrum and BER performance are affected by input signal and pump power as required in the execution of our ongoing MDM transmission experiments

    Multimode EDFA performance in mode-division multiplexed transmission systems

    No full text
    We report a detailed study on the system performance of a two-mode group EDFA. In particular we quantify how the gain spectrum and BER performance are affected by input signal and pump power as required in the execution of our ongoing MDM transmission experiments

    480 km transmission of MDM 576-Gb/s 8QAM using a few-mode re-circulating loop

    Get PDF
    We demonstrate successful 3-mode-division-multiplexed × 192-Gb/s dual-polarization 8QAM (total 576 Gb/s) transmission over 480 km of few-mode fiber (FMF). This distance was obtained using an all few-mode re-circulating loop containing a 60 km FMF span

    High capacity multi-mode transmission systems using higher-order modulation formats

    No full text
    We look at multi-mode fiber as potential means to upgrade capacity of optical transmission systems compared to current single-mode technology by employing multiple modes as transmission lanes as well as using higher-order modulation formats

    Hollow core fibres for high capacity data transmission

    No full text
    We review our progress in developing, characterizing and handling hollow-core photonic bandgap fibers with improved transmission properties, targeted at high-capacity, low-latency data transmission in the current telecoms window and at the potentially lower-loss 2µm wavelengths

    30.7 Tb/s (96x320 Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber

    No full text
    We report for the first time coherently-detected, polarization-multiplexed transmission over a photonic band gap fiber. By transmitting 96 x 320-Gb/s DP-32QAM modulated channels, a net data rate of 24 Tb/s was obtained
    corecore