58 research outputs found

    Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways

    Get PDF
    Withaferin A (WA), a steroidal lactone derived from the plant Vassobia breviflora, has been reported to have anti-proliferative, pro-apoptotic, and anti-angiogenic properties against cancer growth. In this study, we identified several key underlying mechanisms of anticancer action of WA in glioblastoma cells. WA was found to inhibit proliferation by inducing a dose-dependent G2/M cell cycle arrest and promoting cell death through both intrinsic and extrinsic apoptotic pathways. This was accompanied by an inhibitory shift in the Akt/mTOR signaling pathway which included diminished expression and/or phosphorylation of Akt, mTOR, p70 S6K, and p85 S6K with increased activation of AMPKα and the tumor suppressor tuberin/TSC2. Alterations in proteins of the MAPK pathway and cell surface receptors like EGFR, Her2/ErbB2, and c-Met were also observed. WA induced an N-acetyl-L-cysteinerepressible enhancement in cellular oxidative potential/stress with subsequent induction of a heat shock stress response primarily through HSP70, HSP32, and HSP27 upregulation and HSF1 downregulation. Taken together, we suggest that WA may represent a promising chemotherapeutic candidate in glioblastoma therapy warranting further translational evaluation

    Time-series forecasting techniques for scheduling of multiprocessor computer jobs

    Get PDF
    M.S.Donovan B. Youn

    Cardiovascular Pharmacokinetics, Pharmacodynamics, and Pharmacogenomics for the Clinical Practitioner

    No full text
    Current clinical cardiovascular practice requires a clinician to have a strong foundation in multiple aspects of pharmacology. Modern cardiovascular regimens are complex, and optimal management, application of evolving guidelines, and adoption of new therapies build off a more basic understanding of pharmacokinetics and pharmacodynamics. In addition, it is likely time to add a third pillar into this discussion, the expanding field of pharmacogenomics referring to the genetic influences on drug response. This field has increasing applications in medicine and clearly holds significant promise for cardiovascular disease management. Awareness of pharmacogenomic advances and the fundamentals of pharmacokinetics and pharmacodynamics can help the clinician more easily deliver great care. Here we attempt to briefly summarize and simplify key concepts of pharmacokinetics, pharmacodynamics, and pharmacogenomics relevant to the cardiovascular disease practitioner
    corecore