4 research outputs found

    Switching from Electron to Hole Transport in Solution-Processed Organic Blend Field-Effect Transistors

    Get PDF
    Organic electronics became an attractive alternative for practical applications in complementary logic circuits due to the unique features of organic semiconductors such as solution processability and ease of large-area manufacturing. Bulk heterojunctions (BHJ), consisting of a blend of two organic semiconductors of different electronic affinities, allow fabrication of a broad range of devices such as light-emitting transistors, light-emitting diodes, photovoltaics, photodetectors, ambipolar transistors and sensors. In this work, the charge carrier transport of BHJ films in field-effect transistors is switched from electron to hole domination upon processing and post-treatment. Low molecular weight n-type N,N′-bis(n-octyl)-(1,7&1,6)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI8-CN2) was blended with p-type poly[2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene] (PBTTT-C14) and deposited by spin-coating to form BHJ films. Systematic investigation of the role of rotation speed, solution temperature, and thermal annealing on thin film morphology was performed using atomic force microscopy, scanning electron microscopy, and grazing incidence wide-angle X-ray scattering. It has been determined that upon thermal annealing the BHJ morphology is modified from small interconnected PDI8-CN2 crystals uniformly distributed in the polymer fraction to large planar PDI8-CN2 crystal domains on top of the blend film, leading to the switch from electron to hole transport in field-effect transistors

    Self-Aligned Bilayers for Flexible Free-Standing Organic Field-Effect Transistors

    Get PDF
    [Image: see text] Free-standing and flexible field-effect transistors based on 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene)/polystyrene bilayers are obtained by well-controlled phase separation of both components. The phase separation is induced by solvent vapor annealing of initially amorphous blend films, leading to crystallization of TIPS-pentacene as the top layer. The crystallinity and blend morphology strongly depend on the molecular weight of polystyrene, and under optimized conditions, distinct phase separation with a well-defined and trap-free interface between both fractions is achieved. Due to the distinct bilayer morphology, the resulting flexible field-effect transistors reveal similar charge carrier mobilities as rigid devices and additionally pronounced environmental and bias stress stabilities. The performance of the flexible transistors remains stable up to a strain of 1.8%, while above this deformation, a close relation between current and strain is observed that is required for applications in strain sensors

    Role of oxygen within end group substituents on film morphology and charge carrier transport in thiophene/phenylene small-molecule semiconductors

    Get PDF
    In this study, the end group polarity of (5,5′)-biphenyl-(2,2’)-bithiophenes (PTTPs) was systematically varied from alkyl (1) to alkoxy (2) with one oxygen atom to glycol (3) with two oxygen atoms while the overall length of the end groups is kept constant. Thin films of the three compounds were sublimated at different substrate temperatures and their morphology, crystallinity and charge carrier transport in field-effect transistors was investigated to draw structure-property relationships for the PTTP derivatives. For all three compounds, the effective charge carrier mobility is improved with higher substrate temperatures at which films with higher crystallinity and larger grains are formed. The effective mobility decreases with higher polarity of the end groups from alkyl to alkoxy and glycol. The reliability factor of the alkyl (1) and alkoxy (2) substituted PTTPs decreases with higher substrate temperature, but at the same time this value is enhanced for the glycol substituted molecules (3). The transistors of 3 prepared at higher substrate temperatures also show a reduced threshold voltage and smaller hysteresis in the transfer characteristics. These insights are important for the understanding of the impact of oxygen incorporation into side chain/end group substituents of organic semiconductors and their implementation in organic electrochemical transistors, thermoelectrics and photovoltaics
    corecore