2 research outputs found
Discovery of a steep-spectrum low-luminosity pulsar with the Murchison Widefield Array
We report the discovery of the first new pulsar with the Murchison Widefield Array (MWA), PSR J0036−1033, a long-period (0.9 s) nonrecycled pulsar with a dispersion measure (DM) of 23.1 pc cm−3 . It was found after processing only a small fraction (∼1%) of data from an ongoing all-sky pulsar survey. Follow-up observations have been made with the MWA, the upgraded Giant Metrewave Radio Telescope (uGMRT), and the Parkes 64 m telescopes, spanning a frequency range from ∼150 MHz to 4 GHz. The pulsar is faint, with an estimated flux density (S) of ∼1 mJy at 400 MHz and a spectrum S(v) α v - S 2.0±0.2, where ν is frequency. The DM-derived distance implies that it is also a low-luminosity source (∼0.1 mJy kpc2 at 1400 MHz). The analysis of archival MWA observations reveals that the pulsar’s mean flux density varies by up to a factor of ∼5–6 on timescales of several weeks to months. By combining MWA and uGMRT data, the pulsar position was determined to arcsecond precision. We also report on polarization properties detected in the MWA and Parkes bands. The pulsar’s nondetection in previous pulsar and continuum imaging surveys, the observed high variability, and its detection in a small fraction of the survey data searched to date, all hint at a larger population of pulsars that await discovery in the southern hemisphere, with the MWA and the future low-frequency Square Kilometre Array
Deep multiredshift limits on Epoch of Reionization 21 cm power spectra from four seasons of Murchison Widefield Array observations
We compute the spherically averaged power spectrum from four seasons of data obtained for the Epoch of Reionization (EoR) project observed with the Murchison Widefield Array (MWA). We measure the EoR power spectrum over k = 0.07–3.0 h Mpc−1 at redshifts z = 6.5–8.7. The largest aggregation of 110 h on EoR0 high band (3340 observations), yields a lowest measurement of (43 mK)2 = 1.8 × 103 mK2 at k = 0.14 h Mpc−1 and z = 6.5 (2σ thermal noise plus sample variance). Using the Real-Time System to calibrate and the CHIPS pipeline to estimate power spectra, we select the best observations from the central five pointings within the 2013–2016 observing seasons, observing three independent fields and in two frequency bands. This yields 13 591 2-min snapshots (453 h), based on a quality assurance metric that measures ionospheric activity. We perform another cut to remove poorly calibrated data, based on power in the foreground-dominated and EoR-dominated regions of the two-dimensional power spectrum, reducing the set to 12 569 observations (419 h). These data are processed in groups of 20 observations, to retain the capacity to identify poor data, and used to analyse the evolution and structure of the data over field, frequency, and data quality. We subsequently choose the cleanest 8935 observations (298 h of data) to form integrated power spectra over the different fields, pointings, and redshift ranges