6 research outputs found

    Update on the Management of Uveitic Macular Edema

    No full text
    Uveitic macular edema (ME) is a frequent complication in 8.3% of uveitis patients and is a leading cause of serious visual impairment in about 40% of cases. Despite the numerous available drugs for its treatment, at least a third of patients fail to achieve satisfactory improvement in visual acuity. First-line drugs are steroids administered by various routes, but drug intolerance or ineffectiveness occur frequently, requiring the addition of other groups of therapeutic drugs. Immunomodulatory and biological drugs can have positive effects on inflammation and often on the accompanying ME, but most uveitic randomized clinical trials to date have not aimed to reduce ME; hence, there is no clear scientific evidence of their effectiveness in this regard. Before starting therapy to reduce general or local immunity, infectious causes of inflammation should be ruled out. This paper discusses local and systemic drugs, including steroids, biological drugs, immunomodulators, VEGF inhibitors, and anti-infection medication

    Ultra-Widefield Fluorescein Angiography Image Brightness Compensation Based on Geometrical Features

    No full text
    Ultra-widefield fluorescein angiography (UWFA) is an emerging imaging modality used to characterise pathologies in the retinal vasculature, such as microaneurysms (MAs) and vascular leakages. Despite its potential value for diagnosis and disease screening, objective quantitative assessment of retinal pathologies by UWFA is currently limited because laborious manual processing is required. In this report, we describe a geometrical method for uneven brightness compensation inherent to UWFA imaging technique. The correction function is based on the geometrical eyeball shape, therefore it is fully automated and depends only on pixel distance from the center of the imaged retina. The method’s performance was assessed on a database containing 256 UWFA images with the use of several image quality measures that show the correction method improves image quality. The method is also compared to the commonly used CLAHE approach and was also employed in a pilot study for vascular segmentation, giving a noticeable improvement in segmentation results. Therefore, the method can be used as an image preprocessing step in retinal UWFA image analysis
    corecore