17 research outputs found

    Placenta is Capable of Protecting the Male Fetus from Exposure to Environmental Bisphenol A

    Get PDF
    Embryo-fetal exposure to bisphenol A (BPA) could be related to poor male reproductive parameters in rodents, but this concept has not been convincingly confirmed in humans. We investigated the association of environmental BPA exposure of pregnant women with selected endocrine and anthropometric parameters of male newborns. We analyzed plasma BPA from pregnant mothers, umbilical cord, and placental tissues (n = 117/each group) by liquid chromatography and mass spectrometry. LH, FSH, AMH, TGF beta 2, inhibin B, and selected sex steroids were measured in cord plasma. The infant anthropometric parameters included anogenital distance, stretched penile length, head circumference, birthweight, and length. The median BPA concentrations in maternal and umbilical cord plasma, and in placental tissue were 19.0, 8.0, and 22.2 nmol/L, respectively, the levels thus being over twofold lower in the fetal circulation than in the mother or placenta. The BPA concentrations measured were 100-1000-fold lower than those demonstrated in animal experiments to have endocrine disrupting effects. Multivariable regression analysis indicated no significant correlations between the maternal/fetal/placental BPA concentrations and any of the hormone levels or anthropometric parameter measured. Plasma concentrations of BPA confirmed both maternal, placenta, and fetal exposure to environmental BPA, but the concentrations were orders of magnitude lower than those with documented endocrine disrupting activity. Moreover, the maternal/fetal concentration gradient as well as the lack of correlations of BPA levels with any major endocrine or anthropometric parameters measured in the newborns suggest a protective role for the placenta in reducing fetal exposure to the environmental BPA

    Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus

    Full text link

    Crystallization and preliminary X-ray analysis of the isomerase domain of glucosamine-6-phosphate synthase from Candida albicans

    No full text
    The isomerase domain of glucosamine-6-phosphate synthase from C. albicans has been crystallized and X-ray diffraction data have been collected. Preliminary analysis of the data reveals the oligomeric structure of the eukaryotic synthase to be a ‘dimer’ of prokaryotic-like dimers

    Immunohistochemical study of KiSS1 and KiSS1R expression in human primary breast cancer: Association with breast cancer receptor status, proliferation markers and clinicopathological features

    No full text
    Recent studies have raised doubts about the protective role of KiSS1/KiSS1R in breast malignancy progression. However, the role of the KiSS1/KiSS1R system in primary breast cancer remains largely unknown. The aim of the present study was to characterize the biology and invasiveness potential of primary breast cancer through evaluation of KiSS1/KiSS1R protein expression and cellular localization with regard to lymph node metastasis status, receptor status (ERs, PR and HER-2/neu), and expression of aromatase, MMP-9, Ki-67 and Cyclin D1 in primary invasive breast cancer tissues. We showed increased protein expression of both KiSS1/KiSS1R and MMP-9 in the cancerous tissue compared with noncancerous tissue adjacent to the breast tumour. In the studied group of breast cancer samples, we observed a positive correlation between KiSS1 and MMP-9. We also showed a positive correlation between KiSS1R and aromatase expression in all studied breast cancers. We did not notice any associations between the KiSS1/KiSS1R system and cell cycle regulators. KiSS1/KiSS1R did not correlate either with Cyclin D1 and Ki-67 or with receptor status. However, we showed higher levels of KiSS1R expression in ERα-negative cases than in ERα-positive cases in patients with lymph node metastasis. Present data do not confirm the protective role of KiSS1/KiSS1Rin breast cancer progression, but our results do support the hypothesis that the KiSS1/KiSS1R system is activated even in primary breast cancer and sustained during invasion to local lymph nodes

    Antifungal Activity and Synergism with Azoles of Polish Propolis

    No full text
    The aim of our work was to check if one of the products of natural origin, namely honey bee propolis, may be an alternative or supplement to currently used antifungal agents. The activity of 50 ethanolic extracts of propolis (EEPs), harvested in Polish apiaries, was tested on a group of 69 clinical isolates of C. albicans. Most of the EEPs showed satisfactory activity, with minimum fungicidal concentrations (MFC) mainly in the range of 0.08⁻1.25% (v/v). Eradication of biofilm from polystyrene microtitration plates in 50% (MBEC50, Minimum Biofilm Eradication Concentration) required concentrations in the range of 0.04% (v/v) to more than 1.25% (v/v). High activity was also observed in eradication of biofilm formed by C. glabrata and C. krusei on the surfaces of PVC (Polyvinyl Chloride) and silicone catheters. EEPs at subinhibitory concentrations inhibited yeast-to-mycelia morphological transformation of C. albicans in liquid medium and mycelial growth on solid medium. A synergistic effect was observed for the action of EEP in combination with fluconazole (FLU) and voriconazole (VOR) against C. albicans. In the presence of EEP at concentrations as low as 0.02%, the MICs of FLU and VOR were 256 to 32 times lower in comparison to those of the drug alone. Evidence for the fungal cell membrane as the most probable target of EEPs are presented.status: publishe

    Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus

    Get PDF
    Bacteria of the genus Staphylococcus are common pathogens responsible for a broad spectrum of human and animal infections and belong to the most important etiological factors causing food poisoning. Because of rapid increase in the prevalence of isolation of staphylococci resistant to many antibiotics, there is an urgent need for the development of new alternative chemotherapeutics. A number of studies have recently demonstrated the strong potential of peptidoglycan hydrolases (PHs) to control and treat infections caused by this group of bacteria. PHs cause rapid lysis and death of bacterial cells. The review concentrates on enzymes hydrolyzing peptidoglycan of staphylococci. Usually, they are characterized by high specificity to only Staphylococcus aureus cell wall components; however, some of them are also able to lyse cells of other staphylococci, e.g., Staphylococcus epidermidis-human pathogen of growing importance and also other groups of bacteria. Some PHs strengthen the bactericidal or bacteriostatic activity of common antibiotics, and as a result, they should be considered as component of combined therapy which could definitely reduced the development of bacterial resistance to both enzymes and antibiotics. The preliminary research revealed that most of these enzymes can be produced using heterologous, especially Escherichia coli expression systems; however, still much effort is required to develop more efficient and large-scale production technologies. This review discusses current state on knowledge with emphasis on the possibilities of application of PHs in the context of therapeutics for infections caused by staphylococci

    Anthra[1,2-d][1,2,3]triazine-4,7,12(3H)-triones as a New Class of Antistaphylococcal Agents: Synthesis and Biological Evaluation

    No full text
    The development and spread of resistance of human pathogenic bacteria to the action of commonly used antibacterial drugs is one of the key problems in modern medicine. One of the especially dangerous and easily developing antibiotic resistant bacterial species is Staphylococcus aureus. Anthra[1,2-d][1,2,3]triazine-4,7,12(3H)-triones 22–38 have been developed as novel effective antistaphylococcal agents. These compounds have been obtained by sequential conversion of 1-amino-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (1) and 1-amino-4-bromo-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (2) into the corresponding amides 5–21, followed by subsequent endo-cyclization under the influence of sodium nitrite in acetic acid. Evaluation of the antimicrobial activity of the synthesized compounds against selected species of Gram-positive and Gram-negative bacteria as well as pathogenic yeasts of the Candida genus has been carried out by the serial dilution method. It has been established that anthra[1,2-d][1,2,3]triazine-4,7,12(3H)-triones exhibit selective antibacterial activity against Gram-positive bacteria. Eight, six and seven, out of seventeen compounds tested, effectively inhibited the growth of S. aureus ATCC 25923, S. aureus ATCC 29213 and S. epidermidis ATCC12228, respectively, at a concentration equal to 1 µg/mL or lower. The high antistaphylococcal potential of the most active compounds has been also confirmed against clinical isolates of S. aureus, including the MRSA strains. However, bacteria of the Staphylococcus genus have demonstrated apparent resistance to the novel compounds when grown as a biofilm. None of the four selected compounds 3234 and 36 at a concentration of 64 µg/mL (128 or 256 × MIC—against planktonic cells) has caused any decrease in the metabolic activity of the staphylococcal cells forming the biofilm. The kinetic time–kill assay revealed some important differences in the activity of these substances. Compound 33 is bacteriostatic, while the other three demonstrate bactericidal activity
    corecore