3 research outputs found

    First outbreak with chimeric swine enteric coronavirus (SeCoV) on pig farms in Slovakia – lessons to learn

    Get PDF
    This report describes the first disease outbreak caused by chimeric swine enteric coronavirus (SeCoV) on two pig farms in Slovakia in early 2015. The infection was introduced by import of two breeding boars which were placed in provisional quarantine in a unit not strictly separated from other healthy pigs in the same building. Subsequently, loss of appetite and diarrhoea were observed in both boars during the first three days in the isolation unit. The infection gradually spread to the farrowing area and throughout the farm in two weeks and later to another nearby farm. Yellow watery diarrhoea accompanied by dehydration and death was observed in piglets with a mortality ranging from 30 to 35%. In the absence of an available vaccine, the pregnant sows were dosed by mouth with a 10% suspension prepared from the intestine and faeces of infected piglets in warm water. Three weeks after dosing, new litters of piglets were born which remained healthy with no development of diarrhoea

    The Application of MALDI-TOF MS for a Variability Study of <i>Paenibacillus larvae</i>

    No full text
    In recent decades, the significant deterioration of the health status of honey bees has been observed throughout the world. One of the most severe factors affecting the health of bee colonies worldwide is American foulbrood disease. This devastating disease, with no known cure, is caused by the Gram-positive spore-forming bacteria of Paenibacillus larvae species. At present, DNA-based methods are being used for P. larvae identification and typing. In our study, we compare two of the most advanced DNA-based technologies (rep-PCR and 16S rRNA analyses) with MALDI-TOF MS fingerprinting to evaluate P. larvae variability in Central Europe. While 16S rRNA analysis presents a very limited variation among the strains, MALDI-TOF MS is observed to be more efficient at differentiating P. larvae. Remarkably, no clear correlation is observed between whole-genome rep-PCR fingerprinting and MALDI-TOF MS-based typing. Our data indicate that MALDI-TOF protein profiling provides accurate and cost-effective methods for the rapid identification of P. larvae strains and provides novel perspectives on strain diversity compared to conventional DNA-based genotyping approaches. The current study provides a good foundation for future studies
    corecore