5 research outputs found

    Image retrieval and processing system version 2.0 development work

    Get PDF
    The Image Retrieval and Processing System (IRPS) is a software package developed at Washington University and used by the NASA Regional Planetary Image Facilities (RPIF's). The IRPS combines data base management and image processing components to allow the user to examine catalogs of image data, locate the data of interest, and perform radiometric and geometric calibration of the data in preparation for analysis. Version 1.0 of IRPS was completed in Aug. 1989 and was installed at several IRPS's. Other RPIF's use remote logins via NASA Science Internet to access IRPS at Washington University. Work was begun on designing and population a catalog of Magellan image products that will be part of IRPS Version 2.0, planned for release by the end of calendar year 1991. With this catalog, a user will be able to search by orbit and by location for Magellan Basic Image Data Records (BIDR's), Mosaicked Image Data Records (MIDR's), and Altimetry-Radiometry Composite Data Records (ARCDR's). The catalog will include the Magellan CD-ROM volume, director, and file name for each data product. The image processing component of IRPS is based on the Planetary Image Cartography Software (PICS) developed by the U.S. Geological Survey, Flagstaff, Arizona. To augment PICS capabilities, a set of image processing programs were developed that are compatible with PICS-format images. This software includes general-purpose functions that PICS does not have, analysis and utility programs for specific data sets, and programs from other sources that were modified to work with PICS images. Some of the software will be integrated into the Version 2.0 release of IRPS. A table is presented that lists the programs with a brief functional description of each

    The Geologic Remote Sensing Field Experiment (GRSFE)

    Get PDF
    Field measurements for the Geologic Remote Sensing Field Experiment (GRSFE) were concentrated in the Lunar Lake area of Nevada. The GRSFE data are meant to be used in a variety of investigations, including tests of multispectral radiative transfer models for scattering and emission from planetary surfaces in support of the Earth Observing System (EOS), Mars Observer, and Magellan Missions. Studies will also be pursued to establish the neotectonic and paleoclimatic history of the arid southwestern United States. The data will also be used to support Mars Rover Sample Return (MRSR) simulation studies

    Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere

    Get PDF
    Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and O-18/O-16 in water and C-13/C-12, O-18/O-16, O-17/O-16, and (CO)-C-13-O-18/(CO)-C-12-O-16 in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established similar to 4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing
    corecore