16 research outputs found

    Multi-parameter optimisation of quantum optical systems

    Get PDF
    Quantum optical systems are poised to become integral components of technologies of the future. While there is growing commercial interest in these systems---for applications in information processing, secure communication and precision metrology---there remain significant technical challenges to overcome before widespread adoption is possible. In this thesis we consider the general problem of optimising quantum optical systems, with a focus on sensing and information processing applications. We investigate four different classes of system with varying degrees of generality and complexity, and demonstrate four corresponding optimisation techniques. At the most specific end of the spectrum---where behaviour is best understood---we consider the problem of interferometric sensitivity enhancement, specifically in the context of long-baseline gravitational wave detectors. We investigate the use of an auxiliary optomechanical system to generate squeezed light exhibiting frequency-dependent quadrature rotation. Such rotation is necessary to evade the effect of quantum back action and achieve broadband sensitivity beyond the standard quantum limit. We find that a cavity optomechanical system is generally unsuitable for this purpose, since the quadrature rotation occurs in the opposite direction to that required for broadband sensitivity improvement. Next we introduce a general technique to engineer arbitrary optical spring potentials in cavity optomechanical systems. This technique has the potential to optimise many types of sensors relying on the optical spring effect. As an example, we show that this technique could yield an enhancement in sensitivity by a factor of 5 when applied to a certain gravitational sensor based on a levitated cavity mirror. We then consider a particular nanowire-based optomechanical system with potential applications in force sensing. We demonstrate a variety of ways to improve its sensitivity to transient forces. We first apply a non-stationary feedback cooling protocol to the system, and achieve an improvement in peak signal-to-noise ratio by a factor of 3, corresponding to a force resolution of 0.2fN. We then implement two non-stationary estimation schemes, which involve post-processing data taken in the absence of physical feedback cooling, to achieve a comparable enhancement in performance without the need for additional experimental complexity. Finally, to address the most complex of systems, we present a general-purpose machine learning algorithm capable of automatically modelling and optimising arbitrary physical systems without human input. To demonstrate the potential of the algorithm we apply it to a magneto-optical trap used for a quantum memory, and achieve an improvement in optical depth from 138 to 448. The four techniques presented differ significantly in their style and the types of systems to which they are applicable. Successfully harnessing the full range of such optimisation procedures will be vital in unlocking the potential of quantum optical systems in the technologies of the futur

    Multimode laser cooling and ultra-high sensitivity force sensing with nanowires

    Full text link
    Photo-induced forces can be used to manipulate and cool the mechanical motion of oscillators. When the oscillator is used as a force sensor, such as in atomic force microscopy, active feedback is an enticing route to enhancing measurement performance. Here, we show broadband multimode cooling of −23-23 dB down to a temperature of 8±18 \pm 1~K in the stationary regime. Through the use of periodic quiescence feedback cooling, we show improved signal-to-noise ratios for the measurement of transient signals. We compare the performance of real feedback to numerical post-processing of data and show that both methods produce similar improvements to the signal-to-noise ratio of force measurements. We achieved a room temperature force measurement sensitivity of <2×10−16< 2\times10^{-16} N with integration time of less than 0.10.1 ms. The high precision and fast force microscopy results presented will potentially benefit applications in biosensing, molecular metrology, subsurface imaging and accelerometry.Comment: 16 pages and 3 figures for the main text, 14 pages and 5 figures for the supplementary informatio

    Enhanced photothermal cooling of nanowires

    Get PDF
    We investigate the optomechanical interaction between light and metallic nanowires through the action of bolometric forces. We show that the response time of the photothermal forces induced on the nanowire is fast and the strength of the interaction can overcome the radiation pressure force. Furthermore, we suggest the photothermal forces can be enhanced by surface plasmon excitation to cool the sub-megahertz vibrational modes of the nanowires close to its quantum limit

    The Levi problem in â„‚n: a survey

    No full text
    We discuss domains of holomorphy and several notions of pseudoconvexity (drawing parallels with the corresponding concepts from geometric convexity), and present a mostly self-contained solution to the Levi problem. We restrict our attention to domains of â„‚n

    Finite elements method modelling of accelerometric and barometric sensitivity of quartz resonators

    No full text
    Communication to : 7th European Frequency and Time Forum, Neuchatel (Switzerland), March 16-18, 1993SIGLEAvailable at INIST (FR), Document Supply Service, under shelf-number : 22419, issue : a.1993 n.36 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    corecore