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Abstract

Quantum optical systems are poised to become integral components of tech-

nologies of the future. While there is growing commercial interest in these

systems—for applications in information processing, secure communication and

precision metrology—there remain significant technical challenges to overcome

before widespread adoption is possible. In this thesis we consider the general

problem of optimising quantum optical systems, with a focus on sensing and in-

formation processing applications. We investigate four different classes of system

with varying degrees of generality and complexity, and demonstrate four corre-

sponding optimisation techniques.

At the most specific end of the spectrum—where behaviour is best understood—

we consider the problem of interferometric sensitivity enhancement, specifically

in the context of long-baseline gravitational wave detectors. We investigate the

use of an auxiliary optomechanical system to generate squeezed light exhibiting

frequency-dependent quadrature rotation. Such rotation is necessary to evade

the effect of quantum back action and achieve broadband sensitivity beyond the

standard quantum limit. We find that a cavity optomechanical system is gen-

erally unsuitable for this purpose, since the quadrature rotation occurs in the

opposite direction to that required for broadband sensitivity improvement.

Next we introduce a general technique to engineer arbitrary optical spring

potentials in cavity optomechanical systems. This technique has the potential

to optimise many types of sensors relying on the optical spring effect. As an

example, we show that this technique could yield an enhancement in sensitivity

by a factor of 5 when applied to a certain gravitational sensor based on a levitated

cavity mirror.

We then consider a particular nanowire-based optomechanical system with

potential applications in force sensing. We demonstrate a variety of ways to im-

prove its sensitivity to transient forces. We first apply a non-stationary feedback
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cooling protocol to the system, and achieve an improvement in peak signal-to-

noise ratio by a factor of 3, corresponding to a force resolution of 0.2 fN. We then

implement two non-stationary estimation schemes, which involve post-processing

data taken in the absence of physical feedback cooling, to achieve a compara-

ble enhancement in performance without the need for additional experimental

complexity.

Finally, to address the most complex of systems, we present a general-purpose

machine learning algorithm capable of automatically modelling and optimising

arbitrary physical systems without human input. To demonstrate the potential of

the algorithm we apply it to a magneto-optical trap used for a quantum memory,

and achieve an improvement in optical depth from 138 to 448.

The four techniques presented differ significantly in their style and the types

of systems to which they are applicable. Successfully harnessing the full range of

such optimisation procedures will be vital in unlocking the potential of quantum

optical systems in the technologies of the future.
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Chapter 1

Introduction

Quantum optical systems are on the brink of a transition from experimental plat-

forms to core components of cutting-edge commercial technologies. This transi-

tion promises to unlock new possibilities in a range of fields, from information and

communication technology to precision metrology. As quantum optical systems

become integrated into applied technologies, high performance will become a key

requirement. Proof-of-principal systems, while adequate in an experimental con-

text, will not suffice; instead, components exhibiting optimal performance will be

necessary. The transformation of a proof-of-principal system into a maximally-

performant component suitable for a commercial device will entail system-wide

optimisation.

Quantum optical systems are uniquely difficult to optimise. While quan-

tum effects are precisely what enable the impressive capabilities of such systems,

they also induce a range of challenges. For example, the Heisenberg uncertainty

principle places intrinsic limits on the precision of measurements made on such

systems. These limits manifest as quantum back action—the act of measurement

itself perturbs the system, and this perturbation precludes precise knowledge of

non-commuting observables. Improved manufacturing is not sufficient to over-

come these challenges; instead, the devices must be fundamentally altered in

order to sidestep the problematic quantum effects.

Not all quantum optical systems are amenable to the same styles of optimisa-

tion. The additional complexities required to model quantum behaviour render

even moderately complex systems intractable to detailed theoretical analysis. In

such cases optimisation must proceed via approximate analysis based on those

aspects of the system that are understood. For some systems even this approach

1



2 CHAPTER 1. INTRODUCTION

is infeasible, and one must instead revert to brute-force search. More generally, as

system complexity increases, the required optimisation procedures become more

general and less “physical”.

In this thesis we consider a selection of quantum systems sampled from this

spectrum of complexity (and analytical intractability), and a corresponding col-

lection of methods for optimising their performance.

1.1 Emerging quantum optical technologies

Optical systems have enjoyed a long history as a test bed for physical phenomena,

from the famous Michelson-Morley experiment of 1887 through to the gravita-

tional wave detectors of the present day. For quantum physics, in particular, the

use of light is ubiquitous due to its general experimental convenience, its weak

interaction with the environment, and the relative accessibility of quantum states

and quantum effects.

The uses of quantum optical systems are not constrained to the realm of ex-

perimental physics, however. The most well-known such system with widespread

commercial applications is the laser, which has formed the basis for an astonishing

array of modern technologies. To name just a few, the laser underpins everyday

devices such as barcode scanners, laser printers and CD drives; medical apparatus

including instruments for dentistry[1] and eye surgery[2]; industrial-scale machin-

ery for processing a variety of materials from metals[3, 4] through to plastics[5]

and carbon fibre[6]; and atomic force microscopes for nanoscale imaging[7, 8].

Despite the incredible practical successes of the laser, it is far from the most

interesting of quantum optical systems. In recent years the more exotic quantum

properties of light have been recognised as having enormous potential for informa-

tion and communication technologies and high-precision metrology. Successfully

harnessing the power of quantum superposition and entanglement is expected to

pave the way for a new era of computation[9–11], while exploitation of the quan-

tum back action lies at the heart of provably secure communication via quantum

key distribution[12, 13]. In metrology, similarly, the expected applications of

quantum effects in the devices of the future are diverse: optical lattices form the

basis of the world’s most accurate clocks[14, 15]; squeezed light can enhance the

sensitivity of the most sensitive displacement sensors (as we will discuss in Chap-

ter 2); laser cooling is a prerequisite for atom interferometric gravimeters[16]; and
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so on.

Already these technologies are receiving significant commercial attention, with

companies today delivering quantum random number generators[17], gravime-

ters[18], cold atom-based atomic clocks[19] and quantum key distribution sys-

tems[20]. On the computation side the progress towards viable products is not

so advanced, but if anything the interest and investment are even more intense.

Large companies such as Google[21] and Lockheed Martin[22] are betting on the

technology to enable breakthroughs in artificial intelligence and machine learn-

ing, while there are a wide variety of start-ups looking to carve out more specific

niches in the domain.1

1.2 Key technical challenges

Despite this promising start, there remain significant barriers to the widespread

adoption of exotic quantum optical systems as components of the technologies of

the future. One fundamental problem is that quantum optical systems are inher-

ently fragile. While photons in free space retain quantum information remarkably

well, any interaction with external systems quickly leads to a loss of information

via decoherence, and for information technology applications it is often exactly

this type of interaction that is required.

For secure communication via quantum key distribution, for example, inte-

gration with existing fibre optic networks is desirable. However, losses in the

fibre induce a loss of quantum information and lead to unacceptably low bit rates

when used over large distances. Current telecom-grade low-loss optical fibre typ-

ically exhibits attenuation on the order of 0.2 dB/km[27], which limits the range

of a single hop in a useful quantum network to a few hundreds of kilometers[28].

Unlike with classical communication over optical fibre, the no-cloning theorem

precludes the use of simple amplification to circumvent this issue. Instead, in-

tegration of quantum repeaters into the network is expected to enable secure

communication via multiple hops and thus bypass this limit[29–32], but while

many of the individual components required to build a useful quantum repeater

have been demonstrated, a complete system has not yet been realised. A partic-

1See, for example, Rigetti Computing[23] (full-stack quantum computing), h-bar[24] (general
consulting on quantum information technologies), QxBranch[25] (consulting on applications to
data analytics), and 1QBit[26] (hardware-agnostic software and platforms for industry).
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ular subsystem that we will discuss in more detail in Chapter 5 is the quantum

memory. In brief, the memory used in a quantum repeater must exhibit storage

times long enough to allow entanglement to be shared between distant nodes of

the network, and the time required for this sharing depends on the memory ef-

ficiency. For example, to achieve higher bit rates than direct fibre transmission

over a distance of 500 km, a memory with 90% efficiency and storage time on the

order of seconds is required[31]. A coherent optical memory with efficiency as

high as 87% has been reported, but at this efficiency the storage time was on the

order of microseconds[33]. Conversely, there are memories with storage times of

seconds, but the efficiencies are below 1%[34, 35]. Indeed, the highest reported

storage time for a memory with over 50% efficiency is 0.6 ms[36], indicating that

there is still significant optimisation to be performed before a memory suitable

for a useful quantum repeater becomes within reach.

Generally speaking the situation is not quite so intimidating for sensing ap-

plications, and this is reflected by the relative maturity of commercial sensors

based on quantum optics. Such systems typically have far fewer interacting com-

ponents than large-scale quantum information processing devices, which signifi-

cantly relaxes the degree of internal isolation required for reducing the effect of

decoherence. Indeed, in many sensing applications it is not even necessary to

have long coherence times in the first place. In addition, unlike in quantum key

distribution systems designed to integrate with existing fibre optic networks, a

sensor can usually be delivered as a single self-contained unit, which at least al-

lows sources of noise within the system to be controlled. Despite these mitigating

factors, however, quantum optical sensors still contain delicate components and

configurations susceptible to the weakest environmental disturbances, so perfor-

mance is highly sensitive to external noise sources. In addition to these noises

there is yet another more fundamental source, namely the quantum back action,

whereby the act of measurement itself can significantly disturb the system. Even

this does not enforce a hard limit, however, and with creative system design and

careful optimisation it is possible to evade the effect of back action and thus

further improve performance, as we will discuss in Chapter 2.

In quantum optical systems for both information and communication tech-

nologies and sensing, therefore, there is a general problem of overcoming envi-

ronmental noise. For communication and computing in particular it is expected

that there exist sharp thresholds of performance beyond which entirely new ca-
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pabilities will emerge, such as fault-tolerant computation[37, 38] or high-speed

quantum communication across multiple network nodes[29, 30], while in sensing

it is more a matter of gradual sensitivity enhancement. In both cases, however,

it is clear that iterative optimisation of system performance is vital for further

technological development and commercial adoption.

1.3 Optimising quantum optical systems

Optimisation of quantum optical systems entails some unique challenges. Speak-

ing very generally, one common theme is that it can be difficult to optimise

individual components in isolation. Typically the underlying problem is that sys-

tems are so fragile that perturbations to one part of the system are sufficient to

cause significant disturbances in others.

The Heisenberg uncertainty principle can be interpreted in this context: it is

possible to decrease the noise in one observable, but doing so necessarily increases

noise in any non-commuting observable.

A more concrete example, which will be the focus of Chapter 2, is found in

long-baseline gravitational wave detectors. Injection of classical states of light into

such devices leads to a strict sensitivity limit known as the “standard quantum

limit”, which arises from the phase and amplitude noise in the light. Using

quantum states of light, however, the limit can be beaten: injecting suitable

squeezed light can improve the sensitivity at part of the detection band, at the

expense of a reduction in sensitivity over the rest of the band[39]. In order to

achieve improvement across the entire band (broadband improvement) one must

not only squeeze the light, but ensure that the squeezed quadrature rotates with

detection frequency. If perfect quadrature rotation is not possible, the squeeze

factor must also be frequency-dependent in order to reduce the negative impact of

anti-squeezing at parts of the spectrum where the quadrature angle is imperfect.

That is, one must optimise the squeeze factor and angle simultaneously.

Another example, which we will discuss in Chapter 3, is the class of optical

spring-based sensors. One approach to sensing using optical springs is to trans-

duce a signal of interest onto the displacement of an optical cavity mirror, and

measure that displacement by monitoring the cavity output. Achieving a strong

transduction onto the mirror displacement requires a soft spring constant, which

corresponds to a low cavity finesse, but for optimum readout precision a high
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finesse is necessary. We will show that this tension can be resolved, but only with

significant changes to the system design. The fundamental difficulty in this case

is that the sensing and readout systems are tightly coupled, so must be optimised

as a single unit.

To summarise, for quantum optical systems consisting of multiple physical

or functional components one must often optimise the entire system as a whole.

This process is fundamentally more difficult than when the components are loosely

coupled and can be optimised in isolation.

An additional challenge is that quantum systems are inherently difficult to

model, which means that many even moderately complex systems are largely in-

tractable to useful theoretical analysis. When dealing with such a system one

must essentially revert to a combination of simplified analysis, brute-force, intu-

ition and serendipity. Framing this observation more generally, as the complexity

of the system increases there is less chance that it will be possible to perform

calculated, principled improvements based on theoretical analysis, and instead

optimisation must be performed more as though the system is a black box with

unknown dynamics. A corollary is that for more complex systems the relevant

optimisation processes become more general and applicable to a wider variety of

systems.

In this thesis we consider a collection of systems of varying complexity and

generality, and a corresponding suite of optimisation techniques. Our discussions

range from specific systems that are sufficiently well-understood that paths to op-

timisation can be identified entirely by bespoke theoretical analysis, to broader

classes of systems for which general but theoretically-grounded domain-specific

techniques are beneficial, through to the most general case of systems that are

so complex that they must be treated as unknown black boxes by the optimisa-

tion procedure. Throughout this process we thus provide a selection of specific

techniques suitable in each situation, and simultaneously demonstrate the more

general principle that across the spectrum of system complexity and generality

one must employ vastly different styles of optimisation.

1.4 Thesis outline

The remainder of this thesis is structured as follows.

In Chapter 2 we consider the prospect of enhancing the sensitivity of optical
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interferometer-based displacement detectors using non-classical light generated

by optomechanical systems. Gravitational wave detectors, and interferometers in

general, are limited by the quantum noise in the light used for measurement—

a manifestation of the aforementioned quantum back action. At low powers

and high frequencies the phase noise in the light induces photon shot noise at

detection, while at high powers and low frequencies the amplitude noise ran-

domly drives the test masses and can mask the signal. Injecting amplitude- or

phase-squeezed light can thus reduce the noise floor at a particular part of the

spectrum, but increases noise elsewhere due to the corresponding anti-squeezing.

If the squeezed quadrature rotates with frequency then enhancement across the

entire measurement band is possible. We demonstrate that the output field of

optomechanical systems exhibits frequency-dependent squeezing, and investigate

whether such light is suitable for use in gravitational wave detectors. Despite

the complexity of the relevant systems and the technical difficulty in implement-

ing them, this can be seen as an example of one of the cleanest approaches to

optimising performance. Specifically, the system is sufficiently well-understood

that a path to improving sensitivity is known, and all that remains is to iden-

tify an auxiliary system with the appropriate behaviour. Moreover, the coupling

between the original system and the auxiliary system is minimal—the auxiliary

system affects the behaviour of the detector solely via the light field injected into

the detector, so the two systems can largely be optimised independently.

In Chapter 3 we derive a scheme for synthesising arbitrary optical spring po-

tentials in cavity optomechanical systems by utilising polychromatic light. We

focus on how the scheme may be used to optimise the sensitivity of optical spring-

based gravitational sensors. This approach is applicable to any cavity optome-

chanical system, and has a wide variety of potential uses due to its generality. One

particular fact we demonstrate is that by using this scheme one can essentially

break the aforementioned coupling between the sensing and readout subsystems

of optical spring sensors, by allowing the former to be manipulated arbitrarily

without changing the cavity finesse. From a broad optimisation perspective the

situation here is similar to the previous chapter, in the sense that the procedure

is grounded on a detailed theoretical understanding of the system dynamics.

In Chapter 4 we investigate the force-sensing performance of a nanowire-based

optomechanical system. We first show that by implementing a simple feedback

control system one can significantly damp the nanowire’s motion. We then show
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that the use of this system in a non-stationary feedback cooling strategy enables

an enhancement in sensitivity to transient signals. Next we present two post-

processing schemes, which can be viewed as simulations of the feedback cooling

process, and demonstrate that they achieve a similar enhancement in sensitivity

without the need for additional experimental complexity. These techniques can

be viewed as a more general approach to optimisation than those derived in the

previous chapters, in the sense that they could potentially be used in arbitrary

oscillator-based sensors of transient forces, without an understanding of the full

system-specific dynamics and subtleties.

In Chapter 5 we take a more general approach again, and present a machine

learning algorithm capable of automatically performing multi-parameter optimi-

sation of arbitrary physical systems. The algorithm takes control of a system or

experiment, and through repeated interactions learns a model of its behaviour

and uses this model to determine the optimal parameter set to achieve a certain

objective. This approach largely abandons all physical intuition and knowledge,

since the algorithm treats the physical system as a black box. This technique

enables optimisation of systems that are too complex for any useful theoreti-

cal analysis, with parameter spaces too large for brute-force search. As a proof

of concept, we apply the algorithm to a magneto-optical trap with 63 tunable

parameters.

In Chapter 6 we provide some concluding remarks and an outlook towards

the future of optimisation in quantum optical systems.



Chapter 2

Interferometric sensitivity

enhancement via optomechanical

squeezing

In this chapter we demonstrate how cavity optomechanical systems may be used

to generate squeezed light, and investigate the prospect of using such light to

enhance the sensitivity of interferometer-based gravitational wave detectors.

In Section 2.1 we provide some background and history on interferometer-

based detectors, with a focus on how their performance can be optimised with the

injection of non-classical light. In Section 2.2 we derive expressions describing the

squeezing characteristics of the output field of an idealised cavity optomechanics

system. In Section 2.3 we use these expressions to numerically analyse some prop-

erties of optomechanically-generated squeezed light, under realistic assumptions.

In Section 2.4 we investigate the possibility of using such light to improve the

performance of long-baseline gravitational wave detectors. Finally, in Section 2.5

we provide some concluding remarks.

The contents of this chapter are based on the following publication:

G. Guccione, H. J. Slatyer, A. R. R. Carvalho, B. C. Buchler, and

P. K. Lam, “Squeezing quadrature rotation in the acoustic band via

optomechanics”, Journal of Physics B: Atomic, Molecular and Optical

Physics 49, 065401 (2016)

All stages of the research described in this chapter were performed in close col-

laboration between Giovanni Guccione and myself.

9
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2.1 Background

Interferometry, the use of light interference for precision measurement, is the

basis for many of the world’s most sensitive detectors. General improvements

in design and quality have increased the performance of these detectors over the

last century, but with the effect of classical noise sources now being drastically

reduced we are beginning to enter an era in which the limits imposed by quantum

mechanics become significant.

Heisenberg’s uncertainty principle represents the most fundamental limit to

the sensitivity of a detector. In optics this principle dictates that the phase and

amplitude of the light cannot simultaneously be known precisely. In an interfer-

ometric system effecting a measurement of a field quadrature, this uncertainty

manifests as the well-known shot (or photon counting) noise[39, 41, 42]. The

effect of shot noise can be mitigated by increasing the power of the laser; the

signal increases more rapidly with laser power than the noise, meaning a higher

power yields an improved signal-to-noise ratio. However, a higher laser power

yields a stronger radiation pressure force, and—particularly when free masses are

involved—this back action can drive the optical components of the measurement

apparatus and thus increase noise[43]. That is, even in the absence of experimen-

tal limitations to the laser power there is a tradeoff to be made: a lower power

reduces radiation pressure noise but increases shot noise, while a higher power

decreases the effect of shot noise but increases radiation pressure noise. There

is thus an optimal power at which to operate, where the combined contribution

from radiation pressure noise and shot noise is minimised. This is known as the

standard quantum limit (SQL) for interferometers[44, 45].

To be noticeably affected by the SQL requires extreme optimisation of all

other noise sources, but despite the technical difficulty this regime is now being

explored. The most well-known detectors operating at this level are long-baseline

gravitational wave detectors (see, for example, the recent review by Holst et

al.[46]). The previous generation of detectors tended to operate at a low enough

power to be limited by shot noise across the detection band[47], but the current

generation are limited by the SQL at the optimal detection frequency[48].

There is still potential for improvement, however, since the SQL is not a

fundamental limit[49, 50]. It can be beaten by injecting squeezed light[39, 51,

52]. Specifically, one observes that the radiation pressure and shot noises do not
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contribute equally across the detection band. At high frequencies the radiation

pressure noise is low due to being far from the mechanical resonances, so shot

noise dominates, while at low frequencies the situation is reversed. Therefore, if

one can reduce the effect of either shot noise or radiation pressure noise then the

noise floor at the appropriate part of the spectrum will be reduced. It is here that

squeezing can be advantageous. By using phase-squeezed light, for example, the

shot noise is reduced and the sensitivity at high frequencies improves. Indeed, this

technique has already been used to beat the shot noise limit in interferometers[53–

56]. However, such light also exhibits anti-squeezing in the amplitude quadrature,

which leads to higher radiation pressure noise and thus increased noise at low

frequencies, so once again there is a tradeoff. Similarly, injecting amplitude-

squeezed light (or indeed light squeezed at any fixed angle) sacrifices sensitivity

at some frequencies in order to improve it at others.

Achieving broadband improvement via squeezed light is possible, but requires

the squeezing angle to vary with frequency[52, 57, 58]. That is, at low frequencies

the light should be amplitude-squeezed in order to reduce the dominant radiation

pressure noise, and the squeezed quadrature should rotate by π/2 across the

frequency of optimal sensitivity (∼100 Hz for gravitational wave detectors[48]) to

become phase-squeezed at higher frequencies and thus reduce the shot noise[45].

There are multiple proposals for preparing this type of quadrature rotation.

One approach is to start with a fixed-angle broadband squeezing source and pass

it through a collection of Fabry-Pérot filter cavities, with the dispersive nature of

the cavities (that is, the frequency-dependent optical path length) inducing the

required rotation[45, 59]. Proof-of-principle demonstrations of these systems have

been implemented[60, 61], but significant technical difficulties must be overcome

before they can be effective for use in gravitational wave detectors. Specifically,

filter cavities are affected by several degradation mechanisms[62], and, more fun-

damentally, the band over which quadrature rotation occurs is determined by the

cavity linewidth. A consequence of the latter is that achieving sufficient rota-

tion at acoustic frequencies requires storage times of up to milliseconds[63], and

this regime has only recently been approached experimentally[64]. A related ap-

proach to performing frequency-dependent quadrature rotation is based on the

same idea, but uses either electromagnetically-induced transparency or a cavity

exhibiting optomechanically-induced transparency[65] to achieve a filter with a

tunable, actively narrowed linewidth[66–68]. This approach alleviates the pri-
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mary technical difficulty with traditional filter cavities, namely an extremely low

linewidth.

In all of these approaches the idea is first to generate fixed-angle squeezed

light using established techniques (see, for example, the review by Anderson et

al.[69]) and then filter this light to achieve quadrature rotation. In this chapter

we consider an alternative approach, which is to inject squeezed light generated

by an optomechanical system directly into the interferometer[70–72]. As we will

show, such light naturally exhibits frequency-dependent quadrature rotation due

to the dispersive optomechanical interaction, and, moreover, this effect occurs

over a frequency band determined by the mechanical frequency, which can quite

naturally fall in the acoustic band.

We will demonstrate that with a suitable choice of parameters, within reach of

current state-of-the-art systems[73–75], such a scheme can provide an alternative

to filter cavities and fixed-angle squeezing for use in long-baseline gravitational

wave detectors. There is a fundamental limitation, however, which is that the

frequency-dependent quadrature rotation occurs in the opposite direction to that

required for optimal improvement. Combined with the high anti-squeezing occur-

ring in the orthogonal quadrature, this precludes sensitivity enhancement across

the full detection band. Unlike in the case of fixed-angle squeezed light, it is

possible to attain a modest improvement at both high and low frequencies simul-

taneously, but this would only be potentially useful in specific (unusual) modes

of operation. Thus our proposal is not suitable as a general-purpose method for

optimising gravitational wave detectors.

2.2 Calculation of the output spectrum for op-

tomechanical squeezing

In this section we derive an expression for the output noise spectrum of a linear

cavity with a moveable end mirror. We start by finding an expression for the

output field of the cavity as a function of its inputs, and then from this we

determine the spectra of its individual quadratures.
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âin

âout

â

m
ωm

L0
x̂

Figure 2.1: Basic optomechanical system. The left-hand cavity mirror is fixed,
while the right-hand mirror is moveable and lies in a harmonic potential. The
labels are defined in the text.

2.2.1 Output field

We consider a linear optical cavity of equilibrium length L0 with one fixed mirror

and one moveable mirror with natural mechanical frequency ωm and mass m, as

shown in Fig. 2.1.

For simplicity we consider the limit in which the natural mechanical frequency

is significantly slower than the cavity free spectral range (the spacing between

cavity modes, given by ωFSR := πc
L0

). This allows us to ignore the scattering of

photons into different cavity modes stimulated by the optomechanical interaction,

and thus confine the analysis to a single cavity mode[76, 77].

Let the input laser frequency be ωopt and the equilibrium cavity resonance

frequency be ω0, and define the equilibrium cavity detuning ∆0 := ωopt−ω0. Let

â and â† be the respective annihilation and creation operators for the field inside

the cavity. Let x̂ be the displacement of the moveable mirror from its equilibrium

position, let p̂ be the mirror momentum, and let ω(x̂) be the cavity resonance

frequency for a given displacement.

Basic equations of motion

It will be convenient to work in a frame rotating at the optical frequency ωopt, so

we have the Hamiltonian

Ĥ = ~(ω(x̂)− ωopt)

(
â†â+

1

2

)
+

p̂2

2m
+

1

2
mω2

mx̂
2. (2.1)

We may approximate

ω(x̂) ≈ ω0 −
ω0

L0

x̂ = ω0 −G0x̂, (2.2)
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where we have defined the basic optomechanical coupling strength G0 according

to

G0 := −∂ω(x̂)

∂x̂

∣∣∣∣
0

=
ω0

L0

. (2.3)

This term converts a mirror displacement into a shift in resonance frequency, and

thus describes the strength of the optomechanical interaction. The Hamiltonian

simplifies to

Ĥ ≈ ~(−∆0 −G0x̂)

(
â†â+

1

2

)
+

p̂2

2m
+

1

2
mω2

mx̂
2

≈ −~∆0â
†â− ~G0x̂â

†â+
p̂2

2m
+

1

2
mω2

mx̂
2, (2.4)

where in the second line we have omitted the contribution from the vacuum.

From this and the commutation relations

[â, â†] = 1, [x̂, p̂] = i~, [â, x̂] = [â, p̂] = 0 (2.5)

we can calculate the equations of motion for the Heisenberg-picture operators in

the absence of any noise or input:

˙̂x =
i

~

(−i~p̂
m

)
=

p̂

m
(2.6)

˙̂p =
i

~
(
−i~2G0â

†â+ 2i~mω2
mx̂
)

= ~G0â
†â−mω2

mx̂ (2.7)

˙̂a =
i

~
(~∆0â+ ~G0x̂â) = i(∆0 +G0x̂)â. (2.8)

Accounting for noise and inputs

To complete the picture we must include terms accounting for the mechanical

and optical losses, and the driving input field.

Let the cavity half-linewidth be κ. We consider the adiabatic limit, where

κ� ωm, which allows us to assume that the optical field responds instantaneously

to changes in cavity length. Let the input field be âin, which we take to be a steady

coherent laser drive ain plus vacuum fluctuations δâin (that is, âin := ain + δâin).

Let γ be the mechanical damping rate and consider the mirror to be driven by a

steady, zero-mean Brownian force F̂ . We will define the details of these stochastic

noise terms in Section 2.2.2.
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The full equations of motion, which are known as the quantum Langevin

equations (see Gardiner and Zoller[78] for further discussion), are thus

˙̂x =
p̂

m
(2.9)

˙̂p = ~G0â
†â−mω2

mx̂− γp̂+ F̂ (2.10)

˙̂a = i(∆0 +G0x̂)â− κâ+
√

2κâin. (2.11)

Linearising the system

We will simplify the analysis by considering only small perturbations of the op-

erators from their steady state values. We first calculate the steady state (x, p, a)

based on the mean input field ain and thermal driving F = 0:

˙̂x = 0 =⇒ p = 0 (2.12)

˙̂p = 0 =⇒ ~G0a
∗a−mω2

mx = 0

=⇒ x =
~G0 |a|2
mω2

m

(2.13)

˙̂a = 0 =⇒ i(∆0 +G0x)a− κa+
√

2κain = 0

=⇒ a = −
√

2κain

i (∆0 +G0x)− κ (2.14)

Next we introduce the perturbations from the mean steady states:

δx̂ := x̂− x (2.15)

δâ := â− a (2.16)

Plugging into Eqs. (2.9) to (2.11) (and recalling that âin = ain + δâin) we obtain

˙δx̂ = ˙̂x =
p̂

m
(2.17)

˙̂p = ~G0

(
a∗ + δâ†

)
(a+ δâ)−mω2

m (x+ δx̂)− γp̂+ F̂ (2.18)

δ̇â = ˙̂a = i(∆0 +G0 (x+ δx̂)) (a+ δâ)− κ (a+ δâ) +
√

2κ (ain + δâin) , (2.19)
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which can be expanded and then simplified via Eqs. (2.12) to (2.14):

˙̂p = ~G0a
∗a−mω2

mx+ ~G0

(
a∗δâ+ aδâ† + δâ†δâ

)
−mω2

mδx̂− γp̂+ F̂

= ~G0

(
a∗δâ+ aδâ† + δâ†δâ

)
−mω2

mδx̂− γp̂+ F̂ (2.20)

δ̇â = i (∆0 +G0x) a− κa+
√

2κain

+ i (∆0 +G0x) δâ+ iG0aδx̂+ iG0δx̂δâ− κδâ+
√

2κδâin

= i (∆0 +G0x) δâ+ iG0aδx̂+ iG0δx̂δâ− κδâ+
√

2κδâin

= (i∆− κ) δâ+ iG0aδx̂+ iG0δx̂δâ+
√

2κδâin, (2.21)

where in the last line we have defined ∆ := ∆0 + G0x to be the detuning at the

steady state position.

We observe that applying a phase shift to the input fields ain and δâin causes

a corresponding phase shift in a, and these shifts may then be absorbed into δâ.

That is, by varying the phase of the input field we may arbitrarily shift the phase

of the intra-cavity field fluctuations δâ. Thus for our calculations we can assume

that the input phase is chosen to make a positive and real, while knowing that in

practice we may shift the reference phase of δâ arbitrarily by shifting the phase

of the input field.

We now define the adjusted optomechanical coupling strength G := G0a,

which converts a displacement into the combined frequency shift for the whole

(mean) intra-cavity field. Assuming a � 1 (that is, the number of photons

circulating in the cavity is high) we may omit the second-order perturbation

terms and thus obtain the linearised equations of motion:

˙δx̂ =
p̂

m
(2.22)

˙̂p = ~G
(
δâ+ δâ†

)
−mω2

mδx̂− γp̂+ F̂ (2.23)

δ̇â = (i∆− κ) δâ+ iGδx̂+
√

2κδâin. (2.24)

Solving the system

To solve this system of equations we first apply the Fourier transform

F(f)(ω) :=

∫ ∞
−∞

f(t) exp(−iωt)dt. (2.25)
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For clarity of notation we use the same symbol for an operator and its Fourier

transform, but there will be no ambiguity since from this point on we will only ever

be working in the frequency domain unless explicitly stated otherwise. Similarly,

we will usually drop the argument to operators when it is simply ω. For an

operator f we denote f † ≡ f †(ω) ≡ F(f †)(ω); that is, the Fourier transform of

the conjugate as opposed to the conjugate of the Fourier transform. The system

becomes

iωδx̂ =
p̂

m
(2.26)

iωp̂ = ~G
(
δâ+ δâ†

)
−mω2

mδx̂− γp̂+ F̂ (2.27)

iωδâ = (i∆− κ) δâ+ iGδx̂+
√

2κδâin. (2.28)

To solve for the cavity field δâ we start by eliminating p̂ from the first two

equations to obtain

χ−1
m (ω)δx̂ = ~G

(
δâ+ δâ†

)
+ F̂ , (2.29)

where we have defined the standard mechanical susceptibility

χm(ω) :=
[
m
(
ω2

m − ω2 + iγω
)]−1

, (2.30)

which describes the response of the oscillator to a unit impulsive force in the

absence of any optomechanical interaction.

The equation for δâ can be written in the form

δâ = χopt(ω)
(
iGδx̂+

√
2κδâin

)
, (2.31)

where we have defined the optical susceptibility

χopt(ω) := (iω − i∆ + κ)−1 , (2.32)

which describes the response of the optical cavity to an injected photon (if we fix

the moveable mirror in its steady state position).

Using the identity F(f †)(ω) = F(f)(−ω)† we obtain a similar expression for
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δâ†:

δâ†(ω) = δâ(−ω)†

= χopt(−ω)∗
(
−iGδx̂(−ω)† +

√
2κδâin(−ω)†

)
= χ∗opt(ω)

(
−iGδx̂(ω) +

√
2κδâ†in(ω)

)
, (2.33)

where for the last line we have used Hermiticity of δx̂ and defined

χ∗opt(ω) := (iω + i∆ + κ)−1 = χopt(−ω)∗. (2.34)

Now we may substitute the expressions for δâ and δâ† into Eq. (2.29) to obtain

χm(ω)−1δx̂ = ~G
[
χopt(ω)

(
iGδx̂+

√
2κδâin

)
+χ∗opt(ω)

(
−iGδx̂+

√
2κδâ†in

)]
+ F̂ ,

(2.35)

which can be rearranged to(
χm(ω)−1 − i~G2

(
χopt(ω)− χ∗opt(ω)

))
δx̂ =

√
2κ~G

(
χopt(ω)δâin + χ∗opt(ω)δâ†in

)
+ F̂ .

(2.36)

From this we can define the effective mechanical susceptibility

χeff(ω) :=
[
χm(ω)−1 − i~G2

(
χopt(ω)− χ∗opt(ω)

)]−1
, (2.37)

which describes the full response of the oscillator, in the presence of the optome-

chanical interaction, to an impulsive force. We observe that the optomechanical

interaction causes a frequency-dependent shift in the effective mechanical fre-

quency and linewidth[79, 80]:

ωeff(ω)2 := ω2
m +

~G2

m
=
[
χopt(ω)− χ∗opt(ω)

]
(2.38)

γeff(ω) := γ − ~G2

mω
<
[
χopt(ω)− χ∗opt(ω)

]
. (2.39)

Note that for ω � κ these quantities are essentially constant with respect to ω,

so usually we omit the ω argument and treat them as constants (with respect to

ω).
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Continuing from Eq. (2.36) we obtain

χeff(ω)−1δx̂ =
√

2κ~G
(
χopt(ω)δâin + χ∗opt(ω)δâ†in

)
+ F̂ . (2.40)

Substituting into Eq. (2.31) we can express the cavity field in terms of only the

inputs:

δâ = χopt(ω)
(
iGχeff(ω)

[√
2κ~G

(
χopt(ω)δâin + χ∗opt(ω)δâ†in

)
+ F̂

]
+
√

2κδâin

)
.

(2.41)

By invoking the input-output relation[81] δâout =
√

2κδâ− δâin and rearranging

we obtain the output field:

δâout =
√

2κiGχopt(ω)χeff(ω)
[√

2κ~G
(
χopt(ω)δâin + χ∗opt(ω)δâ†in

)
+ F̂

]
+ (2κχopt(ω)− 1)δâin

=
[
2κi~G2χeff(ω)χopt(ω)2 + χopt(ω)/χopt(ω)∗

]
δâin

+ 2κi~G2χeff(ω)χopt(ω)χ∗opt(ω)δâ†in

+
√

2κiGχeff(ω)χopt(ω)F̂ ,

(2.42)

where we have observed that 2κχopt(ω) − 1 = χopt(ω)/χopt(ω)∗. Similarly, the

conjugate is given by

δâ†out =
[
2κi~G2χeff(ω)χ∗opt(ω)2 + χ∗opt(ω)/χ∗opt(ω)∗

]
δâ†in

+ 2κi~G2χeff(ω)χopt(ω)χ∗opt(ω)δâin

+
√

2κiGχeff(ω)χ∗opt(ω)F̂ .

(2.43)

Observations

Before calculating the output spectrum, which will be our main tool for analysing

the properties of this output field, we can make some initial observations from

simply inspecting Eq. (2.42). This will provide intuition that can guide the choice

of parameters in the subsequent sections.

First, in the case that G ≈ 0 (that is, the mechanical motion has a negligi-

ble effect on the optical properties of the system), only the χopt(ω)/χopt(ω)∗δâin

term remains, and the action of the cavity is simply to apply a phase shift of
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2 arg(χopt(ω)) = 2 arctan((∆ − ω)/κ) to the input field. In particular, if this

input field is squeezed then the cavity will perform a frequency-dependent rota-

tion of the squeezed quadrature, which is the basis of approaches to generating

quadrature rotation based on filter cavities (see Section 2.1). We can also see

one reason why these schemes are challenging: to achieve a significant phase shift

over a 100 Hz band we must have a linewidth κ/2π on the order of 50 Hz (or even

lower), which corresponds to a cavity storage time of several milliseconds. Such

cavities have only just started to become within reach of experimental realisa-

tion[64].

When G 6≈ 0 the dynamics become significantly more interesting. Specifically,

one may observe that the output field depends on both the noise in the input

field and its conjugate, so a priori we may be able to choose parameters to

make these terms interfere destructively. By doing this we would reduce the

noise in one component of the output field and thus generate squeezed light.

Moreover, since the coefficients are frequency-dependent, the maximally-squeezed

quadrature would rotate with frequency. Finally, since the coupling terms are

proportional to the mechanical susceptibility, this suggests that any generated

squeezing will be near the mechanical frequency.

In fact, we can extract further insight by inspecting the first two terms of

Eq. (2.42), which we denote δâsqz
out, in more detail. One may notice that the first

two terms resemble the action of the squeeze operator on the input field. The

squeeze operator[82, 83],

Ŝ(r, φ) := exp
[r

2

(
e−2iφâ2 − e2iφ â†

2
)]
, (2.44)

acts on the vacuum (or any coherent state) to reduce the noise in the φ quadrature

by a factor of e−2r and increase the noise in the orthogonal quadrature by e2r.

We refer to r as the squeeze factor and φ as the squeeze angle. The action of the

squeeze operator on the field operator â is given by

Ŝ(r, φ)†âŜ(r, φ) = cosh râ− e2iφ sinh râ†. (2.45)

Thus we see that, if an appropriate choice of squeeze factor r and angle φ can be

made, δâsqz
out indeed describes a (scaled) squeeze of the input vacuum fluctuations.1

1If the reader is unfamiliar with the squeeze operator, for the sake of intuition one can
consider the case that ∆ = 0 and ω � κ, since then we have χopt(ω) = χ∗opt(ω) ≈ χopt(ω)∗
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Specifically, abbreviating the coefficients of the first two terms in Eq. (2.42) as

α(ω) := 2κi~G2χeff(ω)χopt(ω)2 + χopt(ω)/χopt(ω)∗ (2.46)

β(ω) := 2κi~G2χeff(ω)χopt(ω)χ∗opt(ω), (2.47)

we may write

δâsqz
out = α(ω)δâin + β(ω)δâ†in

= c(ω)
(

cosh r(ω)δâin − e2iφ(ω) sinh r(ω)δâ†in

)
, (2.48)

where we take

r(ω) := coth−1

(∣∣∣∣α(ω)

β(ω)

∣∣∣∣) , φ(ω) :=
π

2
+

arg(β(ω))− arg(α(ω))

2
,

c(ω) :=
α(ω)

cosh r(ω)
.

(2.49)

For some choices of parameters this identification is not possible. Indeed, it

is clear from the definitions that a sufficient condition is |α| > |β|, and if we

recall that the hyperbolic functions satisfy cosh2 x − sinh2 x = 1 we see that

|α|2 − |β|2 = |c|2 and thus this condition is also necessary. Some computation

yields

|α(ω)|2 − |β(ω)|2 = 1 + 4κG2~ |χopt(ω)|2 |χeff(ω)|2mγω, (2.50)

so it is not hard to convince oneself that the condition could be violated, for

example by considering frequencies within a linewidth of the effective mechanical

frequency in systems with low mechanical damping rates. We will discuss this

further when considering a specific system in Section 2.3.

Assuming we can indeed achieve the representation in Eq. (2.48), and contin-

uing to ignore the contribution of the thermal spectrum to the output field, we

can gain intuition about the magnitude and quadrature of the squeezing effect

by considering the values of r and φ. Specifically, let us consider the case where

κ � ω, which is the most interesting one for our purposes, since otherwise we

and the form of δâsqzout reduces to d(ω)(δâin + δâ†in) + δâin (for some d(ω)). This represents a
projection of the complex field onto the real axis (which could be seen as a type of degenerate
“squeeze”), a scaling by d(ω), and then addition to the original field. If d(ω) is negative and
real, for example, the net effect of this combined action is to shift the real parts of the input
field towards zero and thus squeeze the field along the real axis.
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could simply use the cavity as a filter (as mentioned above). In this limit we can

consider χopt to be independent of ω, and we also have χ∗opt(ω) ≈ χopt(ω)∗. We

can therefore approximate

β(ω) ≈ 2κi~G2χeff(ω) |χopt|2 (2.51)

α(ω) ≈ 2κi~G2χeff(ω)χ2
opt + χopt/χ

∗
opt

=
χopt

χ∗opt

(
2κi~G2χeff(ω) |χopt|2 + 1

)
≈ χopt

χ∗opt

(β(ω) + 1) . (2.52)

If we further assume γ � ωm, which is to say the mechanical resonator is of

high quality, then we see that the effective susceptibility χeff is almost purely

real (except when very close to the effective mechanical frequency), meaning β is

essentially purely imaginary. A depiction of how α and β lie in the complex plane

is shown in Fig. 2.2. It will be illustrative to consider how this picture varies as

the frequency ω is increased from 0 to ω � ωeff. Initially the susceptibility χeff

increases and thus the magnitude of β increases, with very little change in phase.

As the effective mechanical frequency is approached the magnitude becomes very

large (proportional to 1/γ), until near the effective mechanical frequency β rotates

through the positive real half-plane to lie on the negative imaginary axis. After

this point the dynamics are reversed, and as ω increases further the magnitude

of β decreases back towards 0. With this picture we can gain some intuition into

how the squeezing of the system varies with parameters.2

Looking first at the definition of the squeeze factor r given in Eq. (2.49), we

see that to maximise the squeeze factor we must bring the ratio |α/β| as close to

unity as possible, which, given our approximations, is simply a case of maximising

|β|. This suggests that the maximum attainable squeezing level, which should be

achieved near the effective mechanical frequency, will increase by decreasing any

of the mechanical damping, optical linewidth κ or detuning |∆|.
Now let us consider the angle of squeezing, where in particular we will be

concerned with the change in squeezed angle as ω varies. First note that following

2We also refer the reader to an elegant alternative approach to visualising the behaviour of
optomechanical squeezing, presented by Corbitt et al.[84]: applying a rotation to the quadra-
tures can simplify the input-output relationship (Eqs. (2.42) and (2.43)) to a form depending
only on a single parameter, and significant insight can be extracted simply by considering the
value of that parameter in the various regimes of interest.
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β(0) α(0)

β(< ωeff) α(< ωeff)

β(∼ ωeff)

β(> ωeff) α(> ωeff)

ψ(0)− c.t.

<(z)

=(z)

Figure 2.2: Illustration of coefficients α and β in the limit of large optical
linewidth and small mechanical linewidth. For simplicity we have considered
the case where χopt is approximately real (that is, ∆ = 0); in the general case
α would be rotated by 2 arg(χopt). We have α(ω) = β(ω) + 1 for all ω. As ω
increases from 0, both α(ω) and β(ω) move upwards parallel to the imaginary
axis. When ω becomes very close to the effective mechanical frequency the vec-
tors rotate around the positive real half-plane back to the negative imaginary
axis, after which they move back up towards the real axis as ω further increases.
The squeeze factor r(ω) is the ratio between the lengths of α(ω) and β(ω), while
the total squeeze angle ψ(ω) is the average argument of α(ω) and β(ω) (plus a
constant term, denoted “c.t.” in the plot).
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the squeeze S(r(ω), φ(ω)) there is a scale by c(ω), which may be complex and

thus effect a rotation of the squeezed field, so the squeezed angle ψ(ω) of the

output field is given by

ψ(ω) = arg(c(ω)) + φ(ω)

= arg(α(ω)) + φ(ω)

=
π

2
+

arg(β(ω)) + arg(α(ω))

2

=
π

2
+ arg(χopt) +

arg(β(ω)) + arg(β(ω) + 1)

2
. (2.53)

The first two terms are independent of ω, so to achieve a large amount of squeezing

angle rotation we must cause the average phase of β and β + 1 to vary as much

as possible. Thinking of this in terms of the picture described above we see that,

ignoring the constant terms, the initial squeezing angle is determined by the

initial magnitude of β: for a small magnitude we will have an angle close to π/4,

while for a larger magnitude this will increase towards π/2. As ω increases the

angle tends to π/2, until the effective mechanical frequency is reached at which

point the picture is reflected and the angle jumps to −π/2. Then as we increase

ω further the angle will tend back towards −π/4. Thus the factor determining

the total amount of quadrature rotation across the spectrum is the magnitude of

β at the start and end of the spectrum. We may decrease this magnitude, and

thus increase the total amount of quadrature rotation towards π/2, by increasing

the mechanical frequency, optical linewidth κ or detuning |∆|. Note the contrast

to the squeezing factor, which decreases as κ and |∆| increase.

To conclude our initial observations, we note an interesting property of the

system’s action on commutation relations. Since the squeezing operator is unitary,

and thus preserves commutation relations, it may appear from Eq. (2.48) that if

|c| < 1 the system could effect an increase in commutativity between the input

field and its conjugate, and thus violate the Heisenberg uncertainty principle.

Put another way, if |c| < 1 then the total size of the uncertainty ellipse could

decrease below the shot noise level. However, we find that if we include the

thermal term of Eq. (2.42), and specifically the exact thermal spectrum as defined

below in Eq. (2.58), the deviation of |c| from unity is exactly corrected by the

temperature-independent term of the thermal spectral density. Thus, as required

by the uncertainty principle, the uncertainty does not drop below the shot noise
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level.

2.2.2 Output spectrum

To explore the behaviour of the output field (given by Eq. (2.42)) in more detail

we may calculate the power spectra for its individual quadratures.

Noise correlation functions

The first step is to specify the details of the driving noise terms, namely the input

vacuum fluctuations δâin and the force from the thermal bath F̂ . We assume that

the optical drive is at room temperature, so ~ωopt � kBT and thus the mean

thermal photon occupation nth
o is negligible. Moreover, the field fluctuations are

essentially Markovian for a small bandwidth about optical frequencies[81, 85],

meaning the correlation functions are〈
δâ†in(ω)δâin(ω′)

〉
= 2πδ(ω + ω′)nth

o

≈ 0 (2.54)〈
δâin(ω)δâ†in(ω′)

〉
= 2πδ(ω + ω′)(nth

o + 1)

≈ 2πδ(ω + ω′) (2.55)

〈δâin(ω)δâin(ω′)〉 =
〈
δâ†in(ω)δâ†in(ω′)

〉
= 0, (2.56)

where 〈·〉 denotes the expected value and δ is the Dirac delta function.

For the mechanical noise the situation is less straightforward, since in the

quantum case Brownian forces are non-Markovian[78, 85, 86]. Specifically, we

have the correlation function〈
F̂ (ω)F̂ (ω′)

〉
= 2πδ(ω + ω′)Sth(ω), (2.57)

where the thermal noise spectrum Sth is defined, following the analysis in [85], to

be

Sth(ω) := mγ~ω
[
coth

(
~ω

2kBT

)
− 1

]
. (2.58)

We shall consider the limit in which the thermal correlations are significantly

faster than the mechanical timescales[78], which is to say ~ω � 2kBT . The noise
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spectrum can therefore be approximated as

Sth(ω) ≈ mγ~ω
[
1 +

2kBT

~ω

]
≈ 2mγkBT. (2.59)

Output spectrum for an arbitrary quadrature

We define the quadrature with angle θ as

X̂θ = e−iθδâout + eiθδâ†out. (2.60)

We define the symmetrised spectral density (see Clerk et al.[87] for a comprehen-

sive discussion of noise spectra) of such a quadrature X̂θ, normalised to the shot

noise, to be

Sθ(ω) :=

∫ ∞
−∞

dω′

2π

〈{
X̂θ(ω), X̂θ(ω

′)
}〉

, (2.61)

where {·, ·} denotes symmetrisation: {f, g} := (fg + gf)/2.

Using Eqs. (2.42) and (2.43) for the output field δâout and its conjugate δâ†out,

together with the noise correlation functions Eqs. (2.54) to (2.57), we can deter-

mine Sθ for an arbitrary θ. Some computation, which is rather tedious and not

particularly instructive (and hence omitted), yields

Sθ(ω) = 2κG2 |χeff(ω)|2
(
Sth(ω) + κ~2G2

(
|χopt(ω)|2 +

∣∣χ∗opt(ω)
∣∣2))

×
∣∣χopt(ω)− e2iθχ∗opt(ω)

∣∣2
+ 4κ~G2< [χeff(ω)]=

[
e2iθχopt(ω)∗χ∗opt(ω)

]
+ 2κ~G2= [χeff(ω)]

(∣∣χ∗opt(ω)
∣∣2 − |χopt(ω)|2

)
+ 1.

(2.62)

Squeezing angle and minimised spectrum

Fortunately the dependence of Eq. (2.62) on θ is quite simple, so some further

calculations yield the quadrature angle θmin(ω) minimising the spectrum (and

thus maximising squeezing):

θmin(ω) =
π

2
+

1

2
arctan2

(
(κ2 + ω2 −∆2)ξ(ω)− 4κ∆ζ(ω)

−2(κ2 + ω2 −∆2)ζ(ω)− 2κ∆ξ(ω)

)
, (2.63)
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where arctan2
(
y
x

)
:= arg(x + iy) and we have abbreviated the coefficients of the

two θ-dependent terms in Eq. (2.62) according to

ζ(ω) := 2κG2 |χeff(ω)|2
(
Sth(ω) + κ~2G2

(
|χopt(ω)|2 +

∣∣χ∗opt(ω)
∣∣2)) (2.64)

ξ(ω) := 4κ~G2< [χeff(ω)] . (2.65)

We can also define

Smin(ω) := Sθmin(ω)(ω) (2.66)

to be the value of the spectrum at the optimal angle, for each frequency. We can

interpret θmin(ω) and Smin(ω) as the squeeze angle and factor for frequency ω.

2.3 Properties of optomechanical squeezing

With the noise spectrum Eq. (2.62) in hand we can investigate some properties

of optomechanical squeezing. In particular, of course, we will focus on how the

level and angle of squeezing vary with frequency in parameter regimes suitable

for gravitational wave interferometry.

The parameters we use for the analysis and throughout the remainder of

the chapter are shown in Table 2.1. Note that we have introduced several pa-

rameters commonly used for characterising optomechanical systems, and from

which all parameters in the above analysis can be deduced. Specifically: the

quality factor of the mechanical resonator, Qm := ωm/γ; the total input laser

power, Pin := ~ωopt |ain|2; the laser wavelength, λ := 2πc/ωopt; the cavity fi-

nesse, F = ωFSR/2κ; and the single-photon optomechanical coupling strength,

g0 := G0

√
~/2mωm. We have chosen to consider a cavity with medium finesse

and relatively large damping rate, since this is both experimentally realistic and

allows us to investigate behaviour in a regime where filter cavities would not be

useful for inducing suitable quadrature rotation. We have also selected the pa-

rameters to limit the maximum attainable squeezing to 10 dB, since this allows

a fair comparison with traditional squeezing techniques[45]. We note that with

this choice of parameters the squeezing dilation factor c(ω) from Section 2.2.1 is

extremely close to 1, except within a narrow band (with width proportional to

the mechanical linewidth) about the effective mechanical frequency. This implies

that we can generally consider the action of the cavity to be a pure squeeze,
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Parameter Symbol Value

Mechanical frequency ωm 2π × 150 Hz
Mechanical quality factor Qm 5× 106

Mirror mass m 0.5 kg
Temperature T 3 mK

Input power Pin 20 W
Wavelength λ 1064 nm
Free spectral range ωFSR 2π × 1 GHz
Cavity damping κ 2π × 0.5 MHz
Finesse F 1000
Single-photon OM coupling g0 2π × 0.63 mHz

Test masses (LIGO) mgw 40 kg
Cavity length (LIGO) Lgw 4 km
Cavity damping (LIGO) κgw 2π × 100 Hz

Table 2.1: Parameters used for the analyses of optomechanical squeezing and
interferometric sensitivity enhancement.

followed by a rotation, followed by the addition of thermal effects.

With these parameters fixed we may calculate the spectrum in a few different

scenarios. Specifically, we are looking to achieve squeezing in the acoustic band

below around 300 Hz and ideally a quadrature rotation through an angle of π/2

across this band, since this is the behaviour required for optimising long-baseline

gravitational wave detectors.

We start by considering the squeezing factor (the spectral density of the

maximally-squeezed quadrature) as a function of frequency and cavity detun-

ing, as shown in Fig. 2.3. We first observe that squeezing is generally strongest

when the detuning is within a single cavity linewidth; outside this region the

optical susceptibilities become low and thus the strength of the optomechani-

cal non-linearity reduces, precluding the generation of significant squeezing. For

suitable detunings, a high squeezing factor is obtained across the full band of

interest, peaking at approximately 10 dB as the effective mechanical frequency

is approached. However, in a narrow band about the effective mechanical fre-

quency, where the frequency response inverts, there is a reduction in squeezing

(the width of this feature is proportional to the mechanical linewidth). We also
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Figure 2.3: Squeezing factor Smin(ω) for various detunings. Three specific detun-
ings ∆ = −0.5κ, 0, 0.5κ are marked. Note the sharp feature tracking the effective
mechanical frequency, where the frequency response of the system reverses and
the squeezing reduces in a very narrow band. In reality the width of this band
is proportional to the mechanical damping rate and too narrow to see, but it is
artificially increased here.
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Figure 2.4: Squeezing angle θmin(ω) for various detunings. Three specific detun-
ings ∆ = −0.5κ, 0, 0.5κ are marked.

see that the squeezing factor diminishes as the frequency becomes too far from the

mechanical frequency, again because the effect of the optomechanical interaction

is attenuated by the low mechanical susceptibility.

We can similarly view the squeezing angle as a function of frequency and

detuning, as shown in Fig. 2.4. As with the squeezing factor, the rotation of

the squeezed angle generally tends to occur in the vicinity of the mechanical

frequency. Unlike with the squeezing factor, however, a stronger rotation effect

(that is, rotation through a larger angle) occurs with larger detunings. That is,

there is a tradeoff to be made between the squeeze factor and the amount of

quadrature rotation: detuning further from the cavity resonance increases the

amount of rotation but decreases the squeeze factor across the band.

To see more detail we consider three specific detunings ∆ = −0.5κ, 0, 0.5κ,

and plot their squeezing factors and phases in Fig. 2.5. Comparing the three
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Figure 2.5: Squeezing factor Smin(ω) and angle θmin(ω) for specific detunings
∆ = −0.5κ, 0, 0.5κ. We have applied constant phase shifts to the squeezing
angles (which, as discussed in Section 2.2.1, is possible by simply shifting the
phase of the input field) in order allow the frequency dependence for different
detunings to be compared more easily.
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plots we again see the tradeoff between squeeze factor and the total amount

of quadrature rotation. Similarly, we can see more clearly that the interesting

dynamics—high squeezing and quadrature rotation—both occur in the vicinity of

the mechanical frequency, meaning if one desires good squeezing then one must

also deal with the steady rate of quadrature rotation (and conversely). This

observation will be important in the next section when we consider the use of

optomechanically-squeezed light for gravitational wave detectors.

As discussed in Section 2.2.1 the light ejected from the cavity is not purely

squeezed—there is additional noise due to the thermal effects (and, at least in

a very narrow band about the effective mechanical frequency, due to the op-

tomechanical interaction too). Therefore it is important to understand the full

spectrum of noise, not only that in the squeezed quadrature. In Fig. 2.6 we

plot the spectra of all quadratures as a function of angle for specific detunings.

We see that, especially near the effective mechanical frequency (where the noise

is resonantly amplified), significant anti-squeezing occurs. Combined with the

observation above, that in order to have squeezing one must be near the me-

chanical frequency and thus also have quadrature rotation, this suggests a dif-

ficulty with the use of optomechanically-generated squeezed light in practice:

unless the quadrature rotation is perfectly matched to the appropriate system,

significant contamination could occur from the anti-squeezing and thus degrade

performance.

2.4 Enhancement of LIGO sensitivity via op-

tomechanical squeezing

In this section we investigate how we expect the sensitivity of the Laser Interfer-

ometer Gravitational-Wave Observatory (LIGO) to be affected by the injection

of optomechanically-generated squeezed light.

We consider a setup as shown in Fig. 2.7, with optomechanical squeezing

injected into the dark port of the interferometer. The main parameters of the

system that will concern us are the arm length Lgw, test mirror mass mgw, cavity

half-linewidth κgw and input power Pgw. Standard values for these parameters

are given in Table 2.1 (with the exception of Pgw, the choice of which we will

explain in the next section).



2.4. LIGO SENSITIVITY ENHANCEMENT 33

−π/2

0

π/2
θ

(r
ad

)
∆ = −0.5κ

−π/2

0

π/2

θ
(r

ad
)

∆ = 0κ

50 100 150 200 250 300

ω/2π (Hz)

−π/2

0

π/2

θ
(r

ad
)

∆ = 0.5κ

Sθ (dB)
−10

−5

0

5

10

15

20

25

30

Figure 2.6: Quadrature spectrum Sθ(ω) for all angles and specific detunings.
Notice that there is significant anti-squeezing in the vicinity of the effective me-
chanical frequency.
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LIGO
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Injection to dark port OM squeezing

Figure 2.7: Proposed setup for LIGO with optomechanical squeezing. The output
from the optomechanical system is injected into the dark port of the interferom-
eter.
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2.4.1 The standard quantum limit

As discussed in Section 2.1, the sensitivity of the current LIGO detectors is limited

by quantum noise across much of the detection band. This limit arises from

shot noise—which introduces fluctuations in the detected output field—at high

frequencies, and from radiation pressure noise—which randomly drives the test

masses—at low frequencies.

For each given frequency there is an optimal power at which the contributions

from these two noise sources agree and their sum is minimised: further increasing

the power increases the contribution of radiation pressure noise and increases the

total noise, while decreasing the power increases the shot noise and also leads

to an increase in total noise. This point is the standard quantum limit (SQL).

To see more quantitatively how the limit arises, we note that the noise spectrum

for the conventional LIGO interferometer when vacuum is injected into the dark

port, assuming all non-quantum noise to be negligible, is[45]

SLIGO(ω) =
8~

L2
gwmgwω2

× 1

2

(
1

K(ω)
+K(ω)

)
, (2.67)

where K is a coupling constant describing how input fluctuations are coupled to

output fluctuations via the radiation pressure force and the test masses, given by

K(ω) := Pgw ×
4ωopt

L2
gwmgwκ4

gw

× 2κ4
gw

ω2(κ2
gw + ω2)

. (2.68)

Looking at the expression in parentheses of Eq. (2.67), the K term describes the

contribution of radiation pressure noise (as the optomechanical coupling increases,

the fluctuations in the light are more strongly imprinted onto the test mass mo-

tion), while the 1/K term describes the shot noise (the signal increases with higher

optomechanical coupling, and thus the effect of shot noise decreases[88]). If we

fix all parameters except the input power Pgw then it is clear that the spectrum

is minimised, and thus the SQL is attained, when we have K(ω) = 1. That is

(defining PSQL(ω) to be the appropriate operating power), we have

PSQL(ω) :=
L2

gwmgwκ
4
gw

4ωopt

× ω2
(
κ2

gw + ω2
)

2κ4
gw

, (2.69)
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Figure 2.8: Sensitivity of conventional LIGO interferometer when configured to
reach the SQL at the optimal detection frequency, compared to the full spectrum
of the SQL. The sensitivity ratio is defined as the square root of the appropriate
spectral density normalised to the square root of the spectral density at the
optimal detection frequency (SSQL(κgw)).

and the spectrum of the SQL is then given by

SSQL(ω) = SLIGO(ω)
∣∣
Pgw=PSQL

=
8~

L2
gwmgwω2

. (2.70)

We will typically be interested in optimising the performance for signals in the

vicinity of the linewidth κgw, which we refer to as the optimal detection frequency

(κgw = 2π × 100 Hz for LIGO), so we henceforth assume Pgw to be the operating

power required to reach the SQL at this point:

Pgw = PSQL(κgw) =
L2

gwmgwκ
4
gw

4ωopt

. (2.71)

For the parameters given in Table 2.1 we have Pgw ≈ 1.4 kW. The sensitivity of

the conventional LIGO setup, given these parameters, is shown in Fig. 2.8.

2.4.2 LIGO spectrum for arbitrary input

We have seen the LIGO noise spectrum when unsqueezed vacuum is injected,

but to determine the effect of injecting optomechanically-squeezed light we must



36 CHAPTER 2. SENSITIVITY ENHANCEMENT VIA SQUEEZING

calculate the spectrum SbLIGO for an arbitrary input field δb̂ ≡ δb̂(ω). Defining

the quadratures Ŷθ of the input field as in Eq. (2.60), the raw quantum noise in

the LIGO measurement is given by[45]

h(ω) :=

√
SSQL(ω)

2K(ω)
eiβ(ω)

(
Ŷπ/2(ω)−K(ω)Ŷ0(ω)

)
, (2.72)

where β(ω) := arctan(ω/κgw).

Defining Φ(ω) := − arccot(K(ω)), and noting that K(ω) > 0 and thus Φ(ω) ∈
(−π/2, 0), we have

1 = −
√

1 +K(ω)2 sin Φ(ω), K(ω) =
√

1 +K(ω)2 cos Φ(ω), (2.73)

so we can write

Ŷπ/2(ω)−K(ω)Ŷ0(ω) =
√

1 +K(ω)2
(
− sin Φ(ω)Ŷπ/2(ω)− cos Φ(ω)Ŷ0(ω)

)
=
√

1 +K(ω)2
(

(− cos Φ(ω) + i sin Φ(ω)) δb̂

+ (− cos Φ(ω)− i sin Φ(ω)) δb̂†
)

= −
√

1 +K(ω)2ŶΦ(ω)(ω), (2.74)

and thus

h(ω) = −
√
SSQL(ω)

√
1 +K(ω)2

2K(ω)
eiβ(ω)ŶΦ(ω)(ω). (2.75)

Let Sbθ(ω) denote the spectral density of the θ quadrature of the input field δb̂ (as

in Eq. (2.61)). Using the fact that SSQL, K and Φ are even functions of ω, and β

is an odd function, we can thus write the noise spectrum for LIGO with input δb̂

as simply

SbLIGO(ω) = SSQL(ω)× 1

2

(
1

K(ω)
+K(ω)

)
SbΦ(ω)(ω)

= SLIGO(ω)SbΦ(ω)(ω). (2.76)

Therefore we can think of the effect of LIGO as simply reading out the Φ quadra-

ture of the input field and then scaling by SLIGO. With this in mind we refer

to Φ as the readout angle (although note that in reality a fixed-phase homodyne
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detection is performed, and it is the Φ quadrature of the input field that con-

tributes to the noise in that measurement because of the nature of the squeezing

performed by the arm cavities[45]).

We see that to minimise the noise at a certain frequency ω0 the input field

must be squeezed along the Φ(ω0) quadrature. If the squeezed quadrature is

frequency-independent there will also be an improvement at nearby frequencies,

but further away from ω0 there will be an increase in noise due to anti-squeezing.

If the squeezed quadrature rotates with frequency, and in particular varies exactly

with Φ(ω), then broadband improvement is possible.

Interestingly, if the squeezing angle is perfect then the LIGO sensitivity will

not be affected by the orthogonal quadrature at all, regardless of how much anti-

squeezing occurs. On the other hand, if the angle has even a slight deviation

then the anti-squeezing does contribute to the noise—in fact, for any deviation

from the optimum angle there will be an ideal squeezing factor beyond which the

noise actually increases due to the excess noise from anti-squeezing overcoming

the reduction due to the squeezing.

2.4.3 Comparison of LIGO performance for different in-

put fields

We are now in a position to compare the performance of LIGO with different input

fields. We consider unsqueezed vacuum, fixed angle squeezing, optomechanical

squeezing, and, for reference, ideal squeezing with perfect quadrature rotation.

With Eq. (2.76) in hand it is simple to determine the spectra in each of these

cases. Light squeezed by a factor of e−2r at angle ν has spectral density[83]

Ssqz(ω) = e2r sin2(Φ(ω)− ν) + e−2r cos2 (Φ(ω)− ν) , (2.77)

which is easily simplified to

Ssqz(ω) = cosh 2r − cos [2(ν − Φ(ω))] sinh 2r. (2.78)

Therefore for fixed angle squeezing the LIGO spectral density becomes

Sfixed
LIGO(ω) = SLIGO(ω) (cosh 2r − cos [2(ν − Φ(ω))] sinh 2r) . (2.79)
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Figure 2.9: Comparison of optomechanical squeezing angle θmin and LIGO read-
out angle Φ, for zero detuning ∆ = 0. Note that we have applied constant offsets
to Φ and θmin, and restricted all angles to [−π/2, π/2).

Similarly, when light with squeezing factor e−2r and ideal squeezing angle

Φ(ω) is used we simply have

Sideal
LIGO(ω) = SLIGO(ω)e−2r, (2.80)

while for optomechanically-squeezed light we have

SOM
LIGO(ω) = SLIGO(ω)SΦ(ω)(ω), (2.81)

with Sθ as defined in Eq. (2.62).

It is clear that the performance of optomechanical squeezing will depend heav-

ily on how well the squeezed angle θmin(ω) matches the LIGO readout angle Φ(ω).

These quantities are compared in Fig. 2.9. We notice that the angles vary in

opposite directions, suggesting we will not be able to achieve a sensitivity en-

hancement across the full detection band using optomechanics without further

filtering (this was also recognised in footnote 15 of Kimble et al.[45]). This fact

is not surprising. The cavities of LIGO are themselves optomechanical systems

and thus cause a frequency-dependent squeeze of the input field. The point of

injecting squeezed light is to partially counteract this effect in order maintain

a consistently-squeezed output field. However, we would expect the squeezing
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generated by an auxiliary optomechanical system to exhibit the same frequency

dependence as that generated by the interferometer arms, since they are both

due to the same fundamental physical mechanisms. Despite this drawback, since

both angles vary by roughly π/2 their initial and final angles can be made roughly

similar (modulo π), so improvement on either side of the mechanical frequency

should be possible.

The expected performance of LIGO with different input fields is compared

in Fig. 2.10. As expected, squeezing with perfect quadrature rotation yields an

enhancement in sensitivity across the spectrum. With fixed angle squeezing,

improvement is restricted to a particular part of the spectrum (depending on the

angle), with a decrease in sensitivity elsewhere. This corresponds to minimising

low-frequency radiation pressure noise by utilising amplitude squeezing (ν = 0)

through to minimising high-frequency shot noise by using phase squeezing (ν =

π/2).

With optomechanical squeezing the situation is less straightforward. We see

that, as expected, the opposite quadrature rotation around the mechanical fre-

quency combined with the strong anti-squeezing in this area precludes sensitivity

enhancement across the full band and in particular near the mechanical frequency.

However, on both sides of this band improvement is possible. Generally speaking,

detuning the cavity further from ∆ = 0 reduces the total amount of squeezing

available, but shifts the effective mechanical frequency (depending on the sign of

the detuning) and increases the rate and magnitude of quadrature rotation, which

has the effect of reducing the width of the band in which sensitivity is reduced

and potentially improving performance at either side of the band.

Indeed, looking at the plots for ∆ = ±0.5κ we see that, unlike with fixed

angle squeezing, optomechanical squeezing allows the sensitivity to be improved

at either high or low frequencies without a significant reduction at the other

end of the spectrum (in fact it is possible to choose the phase offset to achieve

enhancement over conventional LIGO at both ends of the spectrum, but the

enhancement factor is quite small). To achieve this we must choose the phase

offset of the optomechanical squeezing so that θmin (roughly) matches Φ at both

ends of the spectrum, as shown in the insets. However, as discussed above this

necessarily means that the angles must disagree in the middle of the spectrum,

and when combined with the high anti-squeezing this leads to a large decrease in

sensitivity.
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Figure 2.10: Comparison of LIGO performance for different input fields. For
each detuning ∆ we have chosen a certain phase offset to give good performance
in some part of the spectrum, and then chosen an angle ν for the fixed angle
source to give an advantage in the same area. The squeeze factor r for ideal
and fixed angle squeezing is chosen so that e−2r = 0.1. The insets show how
the offset optomechanical squeezing angle and LIGO readout angle (restricted to
[−π/2, π/2)) vary with frequency.
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Alternatively, if we require particularly high sensitivity at a certain area and

performance elsewhere is less important, we may use zero detuning and choose

the phase offset to match θmin with Φ at the point of desired maximum sensitivity

(as shown in the ∆ = 0 plot). This achieves an improvement comparable to that

of fixed angle squeezing, but the improvement drops off more quickly due to the

quadrature rotation exposing the system to anti-squeezing. However, in this case

we observe that at the high end of the spectrum the phases partially re-align

and the squeezing factor (and hence anti-squeezing factor) reduces, leading to a

smaller sensitivity reduction than with fixed angle squeezing.

This observation highlights an aspect of optomechanical squeezing that could

prove advantageous over fixed-angle squeezing, namely the frequency dependence

of the squeezing factor. Once we move far enough away from the mechanical

frequency the amount of squeezing becomes low, meaning the negative effect of

a suboptimal squeezing angle is reduced and the performance converges to that

of conventional LIGO. However, it is not clear whether this would be beneficial

in practice, since significant sensitivity must still be sacrificed near the optimal

detection frequency.

2.5 Conclusion

We have derived expressions describing the output field of an idealised optome-

chanical system. Using these we have shown that the squeezing induced by the

optomechanical interaction could potentially have applications in gravitational

wave detectors (and interferometers in general), although whether or not a net

advantage can be gained is unclear.

In particular, we have focused on the frequency-dependent squeezing factor

and angle of optomechanical squeezing, and found that the angle varies in the

opposite direction to that required by gravitational wave detectors. Combined

with the high anti-squeezing that occurs near the mechanical frequency, this al-

most invariably leads to a reduction in sensitivity in a band near the mechanical

frequency. Despite this, we have demonstrated that there could still be an advan-

tage over fixed angle squeezing, which is that sensitivity can be simultaneously

improved (or at least not reduced) at several distinct parts of the spectrum, with

only the performance in the aforementioned band reduced. These properties

could potentially make optomechanical squeezing suitable for certain modes of
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operation of gravitational wave detectors if a narrow band in which high noise is

acceptable can be identified.

We note that while we believe this scheme is within current state-of-the-art

systems, it would still entail significant technical challenges; for instance, the

strict thermal requirements necessary to avoid washing out the squeezing with

noise could prove challenging to meet.

To conclude, while in theory optomechanical squeezing could prove beneficial

for certain unusual modes of operation of gravitational wave detectors, it appears

to be unsuitable as a comprehensive, general-purpose approach to interferometric

sensitivity enhancement.



Chapter 3

Synthesis of custom optical

spring potentials

In this chapter we present a scheme for synthesising custom optical spring po-

tentials in cavity optomechanical systems. This is a general method, applicable

to any optomechanical system based on linear cavities, that could be used to

optimise performance or even explore new parameter regimes. To demonstrate

the utility of the scheme we show how it could be used to significantly enhance

the sensitivity of a proposed optomechanical gravitational sensor.

In Section 3.1 we provide background on levitated optomechanics and the op-

tical spring effect, with a focus on applications in metrology. In Section 3.2 we

develop our scheme for synthesising custom optical spring potentials in cavity op-

tomechanical systems. As a concrete example of an application of this technique,

in Section 3.3 we consider a gravitational sensor based on an optomechanical

levitation system and show how the sensitivity can be enhanced. We give some

concluding remarks, with an outlook towards related future work, in Section 3.4.

The work presented in this chapter was published as:

H. J. Slatyer, G. Guccione, Y.-W. Cho, B. C. Buchler, and P. K. Lam,

“Synthesis of optical spring potentials in optomechanical systems”,

Journal of Physics B: Atomic, Molecular and Optical Physics 49,

125401 (2016)

All stages of the research described in this chapter were performed in close col-

laboration between myself and Giovanni Guccione.
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3.1 Background

Optomechanics is fast becoming established as a powerful, flexible and practical

tool in quantum physics. We have already seen in Chapter 2 that the two-

way interaction between optical and mechanical resonators lies at the heart of

gravitational wave detectors, and that this interaction can be used to generate

non-classical states of light. In terms of sensing and metrology, the applications

are far broader than gravitational wave detection; cavity optomechanical systems

have also been used for displacement[90], force[91, 92], mass[93, 94] and magnetic

field[95–97] sensing, for example. There are also applications in quantum infor-

mation and communication technologies, including single photon generation[98,

99], quantum information processing[100] and quantum memories[101–103]. In a

different vein, optomechanical systems have been proposed as a means of testing

the fundamentals of quantum mechanics. For instance, it has been predicted

that signatures of semiclassical gravity[104] and spontaneous wave-function col-

lapse[105] could be observed in such systems.

The optomechanical interaction is not confined to the textbook example of

a linear cavity with a spring-mounted end mirror. In addition there are a wide

variety of less conventional systems exhibiting the same fundamental phenom-

ena, such as picogram-scale photonic crystal “zipper” cavities[106], micro-toroids

supporting whispering gallery modes[107, 108] and microwave cavities contain-

ing superfluid helium[109], to name a few. A particularly promising class of op-

tomechanical systems involves optically-levitated mechanical oscillators[110–113],

since the near-complete isolation from the environment can result in extremely

low mechanical dissipation rates.

A Gaussian beam incident on a micron-scale dielectric particle tends to trap

the particle; opposite sides of the particle refract light of different intensities,

and this force differential drives the particle towards the region of highest optical

intensity[114, 115]. This can be used for levitation[116] and is also the basis of

optical tweezers, which have become an important tool for micro- and nano-scale

manipulation[117, 118]. Recent work has also explored the optomechanical prop-

erties of particles in such traps[119, 120]. The optical potential experienced by the

trapped particle can be tuned by shaping the transverse mode of the levitating

lasers[121], or using an optical cavity[111, 122] to modify the longitudinal mode

of the light. Ultimately, however, the performance of these systems in cooling
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and sensing applications will be limited by the incoherent scattering of light that

is inherent to their operation.

An alternative approach to levitation, which eliminates incoherent scattering,

is to levitate the end mirror of a high-finesse optical cavity[123, 124]. In this

case the mechanical resonator is coupled to the environment only via background

gas collisions and the coherent interaction with the optical field, which leads to

extremely low damping rates. For example, the system of Guccione et al.[124] is

predicted to exhibit a quality factor on the order of 1010 when operated at high

vacuum.

A further feature of these systems is that the behaviour of the mechanical

oscillator is determined almost entirely by the so-called optical spring effect[125–

127]. When the input field is blue-detuned from the cavity resonance, a decrease

in cavity length due to motion of the mechanical resonator induces an increase in

intra-cavity power, which increases the radiation pressure on the resonator and

thus leads to a restoring force. Motion from the equilibrium position causing an

increase in cavity length induces the opposite effect. This optical restoring force

can be interpreted as a shift in the effective mechanical spring constant, hence

the term “optical spring”.

The optical spring effect enables precise control of the optical potential ex-

perienced by the resonator, which in turn enables tuneability of the mechanical

properties of its oscillation[128]. Although this control is possible, however, there

is little flexibility; a high-finesse cavity invariably leads to a very stiff spring con-

stant, which may not always be the desired outcome. For example, in a sensing

application where the position of a levitated mirror is used to measure some force,

a large mechanical response is required to maximise the signal. Ideally, therefore,

one desires an optical spring of lower stiffness, while still using a high-finesse cav-

ity to maintain optimum interferometric sensitivity of the position readout. As

another example, an alternative use of the optical spring effect for sensing pur-

poses is to transduce a small shift in optical cavity resonance frequency (resulting,

for example, from the binding of a single molecule to the optical resonator) as a

shift in mechanical resonance frequency, and then measure that shift[129]. If the

mechanical frequency depends sensitively on the optical resonance frequency (or,

equivalently, the mechanical displacement) then this transduction significantly

improves the detection sensitivity. Therefore, in this case, the ideal mechanical

potential exhibits a mechanical spring constant that varies significantly with even
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small changes in displacement.

Phrasing these requirements more generally, the performances of optomechan-

ical systems could be improved by customising the optical spring potentials ex-

perienced by the mechanical oscillators in an application-specific manner, and

achieving this without compromising the properties of the optical resonators.

In 2007 it was suggested[130] that certain potentials could be engineered all-

optically via an optomechanical system consisting of two coupled micro-ring res-

onators. By detuning the input laser, or even by injecting an additional laser,

the potential experienced by one of the resonators may be engineered in certain

non-trivial ways. It was later shown that generalising this approach, to engineer

other kinds of potentials by utilising the extra degrees of freedom made available

by more general polychromatic light sources, is feasible[131].

In this chapter we extend this work by presenting an explicit scheme for de-

termining exactly which polychromatic light sources are necessary to generate

approximations of arbitrary optical spring potentials. We then demonstrate how

the scheme could be used to improve the sensitivity of a levitation-based gravi-

tational sensor.

3.2 Synthesis of optical spring potentials

In this section we present our general method for improving flexibility and per-

formance in cavity-based optomechanical systems by showing how customised

force functions (and hence also customised potentials) may be approximately re-

alised by injecting suitable input fields. The general idea is to use the standard

Lorentzian peak of an optical cavity in the presence of a single mode as a building

block, and combine several such modes in order to sculpt suitable force profiles.

The ideal required input fields may be difficult or impossible to generate in prac-

tice, since they require detailed shaping of broadband pulses, so we also show

that approximation via suitable frequency comb inputs is possible.

In Section 3.2.1 we review the physics behind the optomechanical force from

a conventional single input. Before extending these principles to multiple inputs

we consider the implications of interference terms in Section 3.2.2, which will

allow us to assume a superposition principle whereby multiple input fields do not

interact with each other. With this principle in place we may then proceed in

Section 3.2.3 to describe how to determine the input field required to synthesise a
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Figure 3.1: Basic optomechanical system. The left-hand cavity mirror is fixed,
while the right-hand mirror is moveable and lies in a harmonic potential. The
reflectivities of the mirrors are Ri and Rm respectively, the displacement of the
moveable mirror from the equilibrium position is x, the cavity length correspond-
ing to that displacement is Lx, and the power circulating in the cavity is Px.

desired arbitrary force profile. In Section 3.2.4 we explain how these input fields

may be approximated by frequency comb inputs.

3.2.1 Force from a single frequency

We first derive the force experienced by the end mirror in a standard optical

cavity as a function of its position and the frequency of the input mode, which

will form the basis of the main analysis. Unlike in Chapter 2, where the focus

was on the effect of the optomechanical interaction on the output field, here we

are concerned only with the optical force applied to the mechanical resonator.

We consider the standard simple linear cavity with a moveable end mirror, as

shown in Fig. 3.1. Let the reflectivities of the fixed input mirror and moveable end

mirror be Ri and Rm respectively, and let Lx := L0 + x denote the length of the

cavity for a displacement x of the moveable mirror from its mean position.1 Let

the laser frequency be ωδ := ω0 + δ, where δ is the detuning from an equilibrium

cavity resonance frequency ω0. The laser wavelength is then given by λδ = 2πc
ωδ

(and note that L0 is a multiple of λ0/2, since the cavity is on resonance when

there is no detuning and no displacement).

From standard arguments (see Siegman[132], for example) the power circu-

1 Note that throughout this chapter we often use a subscript variable to denote a function
of that variable, with the interpretation that we are interested in the behaviour of the function
even when that variable is fixed. For example, Lx is a function of x, but often we are interested
in only the value of Lx for certain fixed values of x (for instance L0).
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lating in the cavity per unit input power, Px(δ), is

Px(δ) =
1−Ri

1 +RiRm − 2
√
RiRm cos

(
2π Lx

λδ/2

) . (3.1)

We may expand the argument of the cosine term to

2π
Lx
λδ/2

= 2π
L0

λ0/2
+ 2π

x

λ0/2
+ 2

L0δ

c
+ 2

xδ

c
. (3.2)

Since L0 is a multiple of λ0/2 the first term may be removed. Next we assume

that the dynamics are restricted to a small area within the cavity free spectral

range ωFSR := πc
L0

, which implies that |x| � λ0/2 and |xδ| � L0 |δ| � c. The last

term is thus negligible and the middle two are small. We may therefore apply

the small angle approximation, and the cosine can be approximated as

cos

(
2π

Lx
λδ/2

)
≈ 1− 1

2

(
2π

x

λ0/2
+ 2

L0δ

c

)2

= 1− 1

2

4π2

ω2
FSR

(
xωFSR

λ0/2
+ δ

)2

= 1− 1

2

4π2

ω2
FSR

(δ +G0x)2 , (3.3)

where we have introduced the optomechanical coupling strength

G0 :=
2ωFSR

λ0

=
ω0

L0

(3.4)

which, as discussed in Chapter 2, converts a displacement of the mirror into a

shift in cavity resonance frequency. From this we define δx := δ + G0x, which is

the detuning of the laser frequency ωδ from the shifted cavity resonance frequency.

The intra-cavity power (per unit input power) can now be written as

Px(δ) =
1−Ri(

1−√RiRm

)2
+
√
RiRm

4π2

ω2
FSR

δ2
x

. (3.5)

The half-linewidth κ of the cavity, defined so that P0(κ) = P0(0)/2, is given by

κ =
1−√RiRm

2π 4
√
RiRm

ωFSR =
ωFSR

2F , (3.6)
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where F is the cavity finesse. Substituting into the expression for Px(δ) we have

Px(δ) =
1−Ri(

1−√RiRm

)2

κ2

κ2 + δ2
x

. (3.7)

The radiation pressure force Fx(δ) on the end mirror, per unit input power, is

therefore

Fx(δ) =
1 +Rm

c
Px(δ)

≈ 2

c

1−Ri(
1−√RiRm

)2

κ2

κ2 + δ2
x

, (3.8)

where in the last line we have approximated 1 + Rm ≈ 2, assuming the mirror

reflectivity Rm to be close to unity as required for a cavity of reasonable finesse.

The optical spring effect can be seen from this expression. In particular, we

notice that in the blue-detuned regime, where δx > 0, if the position x increases

then δ2
x also increases, leading to a reduction in force Fx and thus a tendency for

x to reduce. Conversely, if the displacement decreases then the force will increase

and push the mirror back towards its equilibrium position. Indeed, the spring

constant for displacement x and detuning δ (measured, as usual, per unit input

power) is given by

kos = −dFx(δ)
dx

=
2

c

1−Ri

(1−√RiRm)2

2G0δxκ
2

(κ2 + δ2
x)

2

=
2Px(δ)

c

2G0δx
κ2 + δ2

x

. (3.9)

We note that a smaller linewidth κ, corresponding to a higher finesse cavity,

yields a stiffer optical spring. As we will discuss in more detail in Section 3.3,

this becomes problematic when we require a soft spring to increase the signal size

but a high finesse to maximise precision of the position readout.

3.2.2 The interaction of multiple optical springs

The force profile described by Eq. (3.8) is valid only for a single-mode input. If

multiple fields of different frequencies are injected into the cavity they will in-
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terfere and cause a component of the intra-cavity power to beat. For example,

if two fields are injected then the force experienced by the mirror will be equal

to the sum of the forces it would have experienced had each field been used in-

dependently, plus a term oscillating at the beat frequency of the two fields. We

will demonstrate how this beating term can be removed, and thus how we may

assume a superposition principle in which the force profile due to a polychro-

matic input field can be obtained by summing the forces due to each individual

monochromatic field.

Let us consider the response of the mechanical resonator to the beating com-

ponent of the field. In general, a resonator’s response to an oscillating signal is a

time-delayed oscillation at that frequency, with the magnitude of the oscillation

determined by the resonator’s susceptibility at that frequency. In particular, a

strong response occurs only in the vicinity (determined by the damping rate) of

the resonator’s natural frequency. Outside this band the magnitude of the re-

sponse drops off with the square of the driving frequency. That is, the response

of the resonator to the beating component of the field can be made arbitrarily

small by increasing the beat frequency sufficiently.2

Next we observe that, due to the periodicity of Eq. (3.1), any given input

field can be further detuned by a multiple of the free spectral range ωFSR without

affecting the response of the system to that individual field. However, if there is

an additional field injected into the cavity then detuning one field by a multiple of

ωFSR will shift the beat frequency by ωFSR. That is, frequency shifting particular

components of a polychromatic input field by multiples of ωFSR can effect an

increase in beat frequencies without changing the response of the system to each

field component in isolation. Combined with the previous observation—that a

sufficiently high beat frequency has negligible effect on the system—this indicates

the path towards removing the effect of beating: apply frequency shifts of input

field components by ωFSR until all beat frequencies are sufficiently large to be

ignored.

We can define the scheme more precisely. Consider a frequency comb input

field with spacing ∆ between modes of the comb and total bandwidth small

relative to the cavity free spectral range. Suppose that, as discussed above,

2In fact, for many applications it would not even be necessary to achieve a negligibly small
oscillator response to the beating; as soon as the beat frequency became higher than other
relevant frequencies the effect could simply be filtered away. Indeed, readout via an optical
cavity would achieve this automatically for beat frequencies higher than the cavity linewidth.
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ωFSRωhigh

Figure 3.2: Illustration of frequency shifting to remove relevant interference ef-
fects. A comb with four modes is shown, with the second and third modes shifted
to adjacent free spectral ranges to ensure that the separation between any pair
of modes is at least ωhigh.

beat frequencies higher than some ωhigh can be ignored (either due to their small

effect on the mechanical response or because they can be filtered away). For

simplicity we also assume that ωFSR > ωhigh—a reasonable assumption given

that for L0 = 5 cm we have ωFSR ≈ 20 GHz, which is far larger than any likely

mechanical frequency for a macroscopic resonator—although this is not necessary,

since if it does not hold then we simply shift each mode by a higher multiple of

ωFSR.

With these assumptions we proceed as follows. We identify a sufficiently large

integer N such that N∆ > ωhigh, and then shift the nth mode of the comb by

(n modulo N) multiples of ωFSR. In this way we spread the modes of the comb

between N separate free spectral ranges, so that all modes within a single free

spectral range are separated sufficiently to have negligible beating. An illustration

of this procedure is shown in Fig. 3.2.

To reiterate, given any frequency comb input, we can perform frequency shift-

ing so that interference effects become negligible and the sum of the forces due

to each individual mode gives a good approximation of the effective force experi-

enced by the mirror. In other words, we can simply assume that for any frequency

comb input field this superposition property holds, with the understanding that

any necessary frequency shifting is included implicitly.

In theory this method extends to the case of general continuous power spectral

density (PSD) input fields. In this case there is a continuum of modes that must

be frequency-shifted, so we must divide the field into “slices” of width less than

that of the bandwidth of the experiment, and then perform frequency shifting

on these slices as above. The idea is that interference effects due to individual

slices are too slow to affect the experiment on the appropriate timescales, while
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the beating between slices is fast enough to be attenuated by the mechanical

resonance. This scheme requires a fine degree of control over the input fields

and is thus infeasible with current technologies, so in practice one would always

use a comb input field. However, the use of arbitrary continuous PSD inputs

is still a useful theoretical tool, since it allows us to argue in terms of integrals

rather than sums, and also means we do not need to concern ourselves with

choosing a suitable comb spacing in high-level discussions. Therefore we typically

introduce our methods and results with reference to continuous PSD inputs under

the assumption that no interference effects occur, and then explain how comb

inputs provide a practical approximation to this ideal situation.

3.2.3 Approximation of an arbitrary force function

Suppose we desire a theoretical force function Fth(x). We wish to find the PSD

p(δ) of an input laser that will cause the total radiation pressure force Frp(x)

experienced by the mirror to be as close to Fth(x) as possible. For convenience,

we consider the PSD to be a function of the detuning from the central frequency

ω0, and we will assume that the PSD is localised within the particular free spectral

range around ω0. As mentioned in the previous section, we will also assume that

no interference effects occur between the different frequency components of the

input field. Under these assumptions the force on the end mirror due to the input

field p(δ) is

Frp(x) =

∫ ∞
−∞

Fx(δ)p(δ) dδ, (3.10)

which can be written

Frp(x) =

∫ ∞
−∞

F0(δ +G0x)p(δ) dδ

= (F0 ∗ p)(−G0x), (3.11)

where F0∗p is the convolution of the force at zero displacement (given by Eq. (3.8))

and the PSD. Our goal is therefore to choose p(δ) so that Fth(x) ≈ Frp(x) =

(F0 ∗ p)(−G0x).

One might hope that this could be achieved via Fourier transforming, since

this would convert the convolution into a product which can be easily inverted.
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However, we found that this does not work particularly well in practice because

the equation most often does not have an exact solution.

Instead it is instructive to consider more qualitatively the action of the cavity.

We first write the convolution in the equivalent form

Frp(x) = (F0 ∗ p)(−G0x) = (F0/β ∗ βp)(δ)
∣∣
δ=−G0x

, (3.12)

where

β :=

∫ ∞
−∞

F0(δ) dδ =
2κ

c

1−Ri(
1−√RiRm

)2 (3.13)

is a normalising factor. This expression suggests that we may view the action

of the cavity as a transformation from the input field p into the radiation pres-

sure force function Frp as follows: first a scaling of the input field by β, then

a smoothing by the normalised Lorentzian F0/β, and then a change of variable

δ → x = −δ/G0. The smoothing, which is analogous to a Gaussian blur, will

blur out any features smaller than the linewidth of the cavity, but will preserve

larger features. For example, in the standard case of a single-mode input we start

with a single sharp Lorentzian peak and blur this out to the width of the cavity

linewidth, yielding exactly the usual Lorentzian force profile.

With this interpretation in mind, it is clear that theoretical force functions

with features smaller than the linewidth of the cavity cannot be well-approximated

regardless of the input field, since any true force function output from the cavity

cannot have such fine features. On the other hand, if the theoretical force function

Fth has only larger features then it can be reliably approximated. More formally,

the requirement is that the function be blurred by the normalised Lorentzian

F0/β without significant effect:

Fth(−δ/G0) ≈ (F0/β ∗ Fth

∣∣
x=−δ/G0

)(δ). (3.14)

With the above assumption, we simply need to choose

p(δ) = Fth(−δ/G0)/β (3.15)
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Figure 3.3: Comparison of a particular desired force function and the actual
force function we would obtain using our method, with the PSD of the input field
required to generate the actual force function. The force profile resulting from a
single-mode input is shown for reference.

and then by Eq. (3.12) we have

Frp(x) = (F0/β ∗ Fth

∣∣
x=−δ/G0

)(δ)
∣∣
δ=−G0x

≈ Fth(−δ/G0)
∣∣
δ=−G0x

= Fth(x). (3.16)

That is, choosing the input field according to Eq. (3.15) will cause the force

experienced by the mirror to be approximately Fth, as required, and the resolution

of this approximation is the linewidth of the cavity.

As an example, in Fig. 3.3 we plot a particular desired force function Fth,

the actual force function we could achieve with the above method Frp, and the

required PSD. We see that the sharp features of the profile are blurred out, but

the general shape is well approximated by the actual force function.
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We stress again that this result hinges on the lack of interference effects be-

tween the different frequency components of the input field, which is impractical

to achieve in general. We resolve this issue in the next section.

3.2.4 Practical considerations

In this section, we show that the use of a frequency comb centred at ω0 with

some given spacing ∆ can be used instead of a continuous PSD input to achieve

the required approximation. Applying the appropriate rectangle approximation

to Eq. (3.10) we have

Frp(x) =

∫ ∞
−∞

Fx(δ)p(δ) dδ

≈
∑
n∈Z

Fx(n∆)p(n∆)∆, (3.17)

and choosing the PSD according to Eq. (3.15) yields

Frp(x) =
∑
n∈Z

Fx(n∆)
Fth(−n∆/G0)∆

β
. (3.18)

The right-hand side corresponds precisely to the force acting on the mirror if

the input field is a frequency comb such that the component at frequency ω0 +

n∆ has power Fth(−n∆/G0)∆/β, assuming interference effects are eliminated.

As discussed in Section 3.2.2, this elimination can be performed by frequency

shifting components of the comb by multiples of the free spectral range. It follows

that a suitable frequency comb yields an approximation of Frp, which is itself an

approximation of the desired force function Fth. Note that, unsurprisingly, a

smaller spacing ∆ leads to a better approximation. The error tends to zero when

∆� κ, since at this point Fx(δ) is well-approximated by its appropriate rectangle

approximation.

For many types of force function the required frequency comb can be generated

by modulation of a single mode. Specifically, the components of the comb can be

realised as sidebands of the central frequency, with their power determined by the

amplitude of the modulation. A combination of phase and amplitude modulation

can be used to enforce any asymmetries in the required comb. The width of the

comb (the maximum difference between the central frequency and a component
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of the comb) determines the maximum modulation frequency necessary, and is

thus the factor limiting the class of PSDs that can be approximated with a single

modulator. Applying a sequence of modulators would allow wider combs to be

created, at the expense of simplicity and flexibility. Alternatively, the modes

of the frequency comb might be generated by commercial multi-channel laser

systems, capable of independently tuning the central frequency of each channel

by up to a few tens of terahertz.

3.3 Optimisation of an optomechanical gravita-

tional sensor via synthesised potentials

In this section, we consider a particular optomechanical system and show how

the techniques developed above could optimise its performance as a gravitational

sensor.

3.3.1 A simple levitated optomechanics system for gravi-

tational sensing

We consider a simplified version of the levitation system of Guccione et al.[124],

where the top mirror of a single vertical cavity is supported by the radiation pres-

sure from the intra-cavity field and constrained to move vertically (see Fig. 3.4).

Variations in either the gravitational field or the mirror mass induce a shift in

the mean mirror position, which can be probed very precisely via the reflected

(or transmitted) optical field[133].

Levitation ensures complete mechanical isolation of the top mirror from the

environment and allows the detection to be unaffected by many sources of external

noise. The stability of the levitated system is due to the optical spring effect as

described in Section 3.2.1 (also see Braginsky et al.[125], Sheard et al.[126] and

Corbitt et al.[127]). With an input laser blue-detuned from resonance, a decrease

in cavity length induces a rise in intra-cavity power. The additional radiation

pressure will then push the mirror back towards equilibrium. Conversely, an

increase in cavity length reduces the power and causes the radiation pressure force

to drop, which causes the mirror to fall back towards equilibrium. Associated

with the positive restoring force there is also negative damping that can induce
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Figure 3.4: Schematic of the simplified levitation system. The top mirror is
constrained to move vertically, and levitates via radiation pressure from the intra-
cavity field with power Px. Changes in the acceleration due to gravity g or mass
m shift the mirror position x and are thus transduced to the phase of the output
field.

parametric instability of the oscillator[134]. The instability can be eliminated

with the addition of a second, red-detuned laser at much lower power[127].

For mechanically-clamped oscillators, the addition of an optical spring per-

turbs the original mechanical frequency and stiffness, and the effective spring

constants produced can be extremely stiff. The levitated system we consider here

is even more extreme, since in the absence of any rigid support the oscillation

relies entirely on the optical spring, and the stiffness is determined entirely by

the optical potential. This property makes the system a particularly illustrative

and simple example to consider, but the methods we will apply for its analysis

could easily be adapted to far more general systems.

Throughout this section we use the following fiducial system parameters:

ωFSR = 2π × 750 MHz (corresponding to L0 = 20 cm), λ0 = 1064 nm and

Rm = 99.99%. The finesse is adjusted by varying the reflectivity of the input

mirror, Ri. We shall express forces in terms of the oscillator weight, which we

denote f0 := mg, input powers in terms of the minimum power required for levi-

tation in the absence of any cavity, p0 := cf0/2, and spring constants in terms of

k0 := 2f0/λ0.
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3.3.2 Sensitivity

As we have mentioned, the basic idea of the system is that a weight fluctuation

induces a shift in mean mirror position, and this mirror position can be precisely

read out optically. It is clear, then, that sensitivity can be increased if the same

weight fluctuation can induce a larger change in position, and this is attained

by having a smaller (softer) optical spring constant. We note that decreasing

the spring constant also makes the system more susceptible to radiation pressure

noise introduced by quantum amplitude fluctuations, but feedback and sensing

methods[135] or injection of non-classical light (exactly as in Chapter 2) can push

the measurement sensitivity beyond this limitation[135]. For the remainder of the

chapter, therefore, we assume the sensitivity to be limited by the detection noise,

rather than force noise affecting the mirror position. In the course of minimising

the spring constant—and thus improving sensitivity—we must ensure that con-

ditions for stable levitation still hold, since if the spring constant becomes too

low then the mirror could fall out of the trap with even the slightest of fluctua-

tions. Thus we consider only methods to reduce the spring constant that allow

the trap threshold, defined to be the maximum weight supported (or equivalently

the maximum value of the force function), to remain sufficiently large. We also

generally look to maintain a constant spring stiffness, which is to say a linear

force profile, in the vicinity of the trapping point.

The simplest way to lower the optical spring constant is to reduce the finesse

of the cavity, but unless the input power is increased this causes a reduction in

the trap threshold, as illustrated in Fig. 3.5. We see that at the equilibrium

position, which is the point where the radiation pressure force Frp matches the

mirror weight f0 = mg, the low-finesse cavity has a significantly softer spring

constant. However, with a low-finesse cavity a higher input power is necessary in

order to maintain a sufficiently deep trap.

Indeed, this tradeoff holds more generally. Appealing to geometric intuition it

is clear that, regardless of the specific shape of the force function, maintaining the

depth of the trap (that is, the maximum value of the force function) and linearity

in the vicinity of the equilibrium position while reducing the spring constant (the

slope of the force function) necessitates an increase in the physical length of the

trap and thus in the integral of the force function. Moreover, we may verify that

the integral of the force function is proportional to the total input power to the
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Figure 3.5: Comparison of force functions obtained with single-mode inputs in
high (3000) and low (300) finesse cavities. Pin is the input power. The input
fields have been detuned in order to shift the equilibrium position in the presence
of gravity to x = 0.

cavity. Integrating both sides of Eq. (3.10) and switching the order of integration:∫ ∞
−∞

Frp(x)dx =

∫ ∞
−∞

∫ ∞
−∞

Fx(δ)p(δ)dδ dx

=

∫ ∞
−∞

∫ ∞
−∞

Fx(δ)dx p(δ)dδ

=

∫ ∞
−∞

∫ ∞
−∞

F0(δ +G0x)dx p(δ)dδ

=
β

G0

∫ ∞
−∞

p(δ)dδ, (3.19)

which demonstrates the required relationship.3 Note that integrating Eq. (3.17)

and rearranging yields the same result. It follows that to reduce the spring

constant without reducing the depth of the trap requires a higher input power.

Put another way, for a given trap depth there is a tradeoff between reducing the

spring constant to improve the sensitivity and keeping the input power low due

to availability or to avoid damaging the optics.

3The “constant” of proportionality here is G0/β, which actually depends on the cavity
finesse, but it is readily verified that if the reflectivity of the moveable mirror is held constant
at a value close to 1 then β is essentially constant for the relevant range of finesses.
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Figure 3.6: Ideal force function shape for optimising the tradeoff between sensi-
tivity and input power.

There is one more factor to consider, which is the effect of cavity finesse on

the precision of the position measurement. The simplest method for achieving a

high-precision readout of the mirror position is to measure the phase shift in the

field reflected or transmitted from the cavity, but the sensitivity of this approach

scales with cavity finesse: a higher finesse causes photons to accumulate a larger

phase shift (for a given mirror displacement) before leaving the cavity. That

is, lowering the finesse to reduce the spring constant could potentially have a

negative impact on the overall sensitivity of the system.

As we will see, the method presented above for synthesising custom potentials

allows us both to overcome this problem and optimise the aforementioned tradeoff

between stiffness and input power beyond what is achievable by simply changing

the cavity finesse.

3.3.3 Sensitivity optimisation

With the above observations in mind, the ideal force function for the task at hand

would have a consistent spring constant in the vicinity of the equilibrium position

and drop sharply to zero outside that region to avoid unnecessary input power,

as shown in Fig. 3.6.

In Fig. 3.7 we show how such an ideal function could be approximated using
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Figure 3.7: Approximation of the ideal force function obtainable using a multi-
mode frequency comb input with a high-finesse cavity, with the force function
obtained with an impractical continuous PSD input field shown for reference.
The input fields required to attain these functions are also shown, where the
height of each peak in the comb input represents the total power in that peak.
Note that, in practice, some peaks of the comb or slices of the continuous input
field would need to be shifted by multiples of the free spectral range ωFSR in order
to remove interference effects, so this plot shows the detunings modulo the free
spectral range.

the method detailed in Sections 3.2.3 and 3.2.4. We first note that the use of a

comb input rather than an unrealistic continuous PSD evidently does not seriously

degrade the quality of the approximation. Indeed, the only effect is to induce

slight fluctuations in spring constant across the linear regime, but depending on

the specific application the impact of these could most likely be eliminated via

appropriate scanning and filtering.

Next we can compare the approximated ideal force function with what we

could obtain using single-mode inputs, as shown in Fig. 3.8. We see that an

appropriate choice of multi-mode input field injected into a high-finesse cavity
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Figure 3.8: Comparison between force functions obtained in various scenarios:
single-mode inputs into low- and high-finesse cavities, and a multi-mode input
into a high-finesse cavity designed to approximate an ideal force function for
gravitational sensing.

can yield a spring constant below that of even a low-finesse cavity, but with

significantly lower power requirements. Specifically, the total power required

by the multi-mode input is the sum of powers in each peak (or, in the case

of a continuous PSD input field, the integral of the PSD), which in this case

is ∼0.004p0, compared to ∼0.008p0 for the single-mode input into a low-finesse

cavity. That is, the use of a multi-mode input field allows one to soften the

spring constant of the sensor—and thus improve sensitivity—with a significantly

lower input power than what would be necessary to achieve the same softening

via reduction of the cavity finesse. Moreover, since the cavity finesse can remain

high, readout precision of the mirror displacement is unaffected.

We have chosen an ideal force function that achieves a comparable spring

constant to the low-finesse cavity without the same power requirements. However,

the tradeoff may be optimised along other axes. To compare the two approaches

more completely we therefore consider the minimum attainable spring constant as

a function of total input power and cavity finesse, for both single- and multi-mode

input fields.
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In the single-mode case, specifying the power and finesse is sufficient to deter-

mine the spring constant at the cavity equilibrium position—it is simply the slope

of the familiar Lorentzian profile at the equilibrium position. For sufficiently low

powers or finesses the trap will be unable to support fluctuations in the mirror

weight (or, indeed, even the mirror weight itself), so we consider only parameters

causing the trap depth, or maximum weight supported, to be at least 1.5 times

the mirror weight (1.5f0).4

In the multi-mode case the situation is less simple, because we are afforded

an extra degree of freedom by the ability to shape the trap. Since we seek the

minimum spring constant, for each power and finesse we choose the shape of

the trap to yield the lowest possible spring constant, again under the condition

that the trap depth remain at least 1.5f0 (although in practice we always choose a

depth of exactly 1.5f0, since a higher depth would waste power that could instead

be used to further reduce the spring constant). This is realised as a ramp with

maximum value 1.5f0, minimum (non-zero) value 0.5f0 (to ensure linearity near

the equilibrium position), and the maximal length permitted by the available

input power.

To summarise, we consider the smallest achievable spring constant (at the

cavity equilibrium position) as a function of input power and cavity finesse, for

single- and multi-mode input fields, under the condition that the resulting traps

can support a weight of at least 1.5f0. This is plotted in Fig. 3.9, with cross-

sections shown in Fig. 3.10. Note that for the sake of simplicity we have performed

the calculations using a continuous PSD input field, but the results would be

almost identical for sufficiently fine combs.

We see that for any given power and finesse, significantly softer spring con-

stants are obtained with a suitable multi-mode input field as compared to a

single-mode field. As finesse increases, the quality of the approximation improves

and thus the relative advantage of using a multi-mode field is enhanced. As

input power increases, the ideal ramp function to be approximated lengthens

and differs more drastically from the typical Lorentzian profile, leading again to

a larger advantage. When the input power and/or finesse become low enough

4Of course, in applications we would not expect a weight variation of anywhere near 0.5f0.
However, the exact threshold is largely irrelevant for our comparison of single- and multi-mode
inputs, since it does not affect the relationship between the methods (in fact, the only effects
of decreasing the threshold are to improve the relative performance of multi-mode inputs and
to expand the domain of allowable parameter values).



64 CHAPTER 3. SYNTHESIS OF OPTICAL SPRING POTENTIALS

Finesse

0
500

1000

1500

2000

Input power (10−3p0)

0
5

10
15

20
25

30

S
pr

in
g

co
n

st
an

t
(1

0
3
k

0
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 3.9: Smallest achievable spring constant as a function of input power and
cavity finesse, for single-mode (upper, blue) and multi-mode (lower, orange) input
fields, under the condition that the trap depth is at least 1.5f0. The surfaces are
shaded according to finesse. Note that with additional sampling the two surfaces
would meet at the low-finesse, low-power boundary of the domain.
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Figure 3.10: Cross-sections showing the smallest achievable spring constant as a
function of input power for a selection of finesses, for single-mode (upper) and
multi-mode (lower) input fields. The solid blue curve gives, for each input power,
the minimum attainable spring constant using a single-mode input field (that is,
the minimum is taken across all valid finesses).

that the multi-mode ramp input field has bandwidth small relative to the cavity

linewidth, the cavity effectively perceives the input field as a single-mode input

and the performances of the two approaches converge.

We also observe that for a given power it is always advantageous to use a

multi-mode ramp input, regardless of the finesse used for each method. That is,

a multi-mode input to a high-finesse cavity is superior to a single-mode input to

a low-finesse cavity. The implication of this is that the conflict between reducing

finesse in order to decrease spring constant and increasing finesse in order to

improve readout precision may be resolved: using a multi-mode input field, a

softer spring constant is attainable with a higher finesse cavity, and thus it is

always advantageous to use the highest possible finesse.

As a concrete example we may calculate the expected enhancement in sensitiv-

ity for the system of Guccione et al.[124], where the mirror has mass m = 0.3 mg,

the cavity finesse is 1000 and the available input power is 3 W. In this case the

multi-mode input yields a spring constant of 1.9 kN m−1, while for the single-mode

input the spring constant is 9.6 kN m−1. This corresponds to an improvement in
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Figure 3.11: Sensitivity enhancement factor (defined as the ratio of spring con-
stant with a single-mode input field to spring constant with an ideal multi-mode
input field) as a function of input power for a range of finesses, assuming a mirror
mass of m = 0.3 mg[124].

sensitivity by a factor of over 5 (where again we have assumed that the sensitivity

is limited by detection noise, as opposed to force noise that perturbs the actual

mirror position). As shown in Fig. 3.11 this factor would increase significantly

with higher input powers or finesses.

Thus we see that even for the very simple system and corresponding class of

force functions considered in this example, the extra flexibility made possible by

our method can allow for significant enhancements in performance.

3.4 Conclusion

We have presented a simple analysis demonstrating that, by judicious choice of

input field, the potential experienced by a moveable end mirror of a linear cavity

can be tailored to perform more effectively for the task of interest. This tailoring

is possible whenever the desired potential possesses features no finer than the

cavity linewidth, and the cavity length varies by amounts small relative to the

wavelength of the light. Given the practical difficulty in obtaining arbitrary con-

tinuous PSD input fields, we have further shown that the use of a frequency comb



3.4. CONCLUSION 67

is a viable alternative in terms of the quality of the approximation, and that with

appropriate frequency shifting the interference effects due to interacting modes of

the comb may be ignored. We have also given a simple example demonstrating

how the ability to synthesise custom potentials can significantly improve the per-

formance of cavity optomechanical sensors. For a gravitational sensor based on a

levitated cavity mirror[124] we predict an immediate enhancement in sensitivity

by a factor of over 5.

In addition to performing a proof-of-concept implementation of this method,

there are several follow-up theoretical studies that could yield interesting results.

One would be to adapt the results to more general optomechanical systems (for

example the zipper cavities or whispering gallery mode resonators mentioned in

Section 3.1); it seems likely that similar results would hold, given that such sys-

tems can often be modelled as linear cavities, but this needs confirmation. More

generally, the analysis could be extended to account for the finite speed of light, or

to a full quantum mechanical treatment. The former, in particular, is interesting

for the case of sensors. For a single blue-detuned input mode, the delayed re-

sponse of the system to shifts in cavity length manifests as an anti-damping force

on the mechanical resonator[134, 136]. This can be counteracted by injecting an

additional red-detuned mode at lower power, which removes the anti-damping

but does not significantly perturb the optical spring frequency shift induced by

the original blue-detuned beam[127, 137]. In our case, however, there could be

several blue-detuned beams contributing anti-damping, so one would expect that

a corresponding ensemble of low-power red-detuned beams would be necessary to

eliminate the anti-damping. For example, associated to the ramp inputs of Sec-

tion 3.3 we may require additional ramps—at significantly lower power—reflected

about the resonance frequency. While this approach seems intuitive, however, a

proper analysis would be necessary before declaring it a potential solution to the

problem—the typical anti-damping analysis assumes small displacements relative

to the optical linewidth[136], which is certainly not the case in our proposed sys-

tem. Finally, it would be interesting to explore practical mechanisms by which

the appropriate input fields could be produced. For simple fields, phase and am-

plitude modulation of a single beam would be sufficient, but for more precise

control or more intricate fields a different approach may be necessary.
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Chapter 4

Feedback cooling and

retrospective filtering for

nanomechanical sensors

In this chapter we consider the problem of signal-to-noise ratio enhancement for

measurements made using nanomechanical systems. We discuss three methods,

based on both physical modifications to the system (feedback cooling) and nu-

merical post-processing (virtual feedback cooling and Kalman filtering). We ap-

ply these methods to a nanowire-based optomechanical force sensor and achieve

significant improvements in sensitivity. In the process we demonstrate the rela-

tionships between the methods and some of their advantages and disadvantages.

In Section 4.1 we give some history on the use of nanomechanical resonators

for sensing purposes, and highlight recent discussions associated with the effi-

cacy of active cooling for optimisation purposes. In Section 4.2 we introduce the

optomechanical system that will provide the platform for the subsequent inves-

tigation and analysis. In Section 4.3 we introduce the three different approaches

to improving the performance of the system as a force sensor, and present the re-

sults of applying them to the system. In Section 4.4 we provide some concluding

remarks and suggest avenues for further investigation associated with this work.

The contents of this chapter are based on material published in:

M. Hosseini, G. Guccione, H. J. Slatyer, B. C. Buchler, and P. K. Lam,

“Multimode laser cooling and ultra-high sensitivity force sensing with

nanowires”, Nature Communications 5, 4663 (2014)
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The design and setup of the experiment described in Section 4.2, along with the

stationary feedback cooling analysis, were performed primarily by Mahdi Hosseini

and Giovanni Guccione. The development of the Kalman filter, the implementa-

tion of the virtual cooling, and the force sensing analyses were performed in close

collaboration between myself, Mahdi Hosseini and Giovanni Guccione.

4.1 Background

Micro- and nano-mechanical resonators provide a promising platform for high-

precision sensing, metrology and imaging. Generally speaking, the combination

of low effective masses and high quality factors in such devices enables strong

transduction of a signal of interest onto the mechanical behaviour of the resonator,

which can then be precisely read out via electrical[139] or optical means[140,

141]. For example, this theme lies at the heart of atomic force microscopy[142],

which has seen widespread applications including force sensing[143] and biological

imaging[144, 145], and magnetic resonance force microscopy[146, 147], which has

been used for subsurface detection of spin centres at the single-electron level[148,

149] and imaging of individual virus particles[150]. Similarly, ultra-sensitive mass

detection is possible by measuring the shift in resonance frequency resulting from

depositing a sample onto the resonator[151], and the shift in equilibrium position

due to nearby charge can form the basis for high-sensitivity electrometers[139].

The sensitivity limit in many of these technologies is set by the unavoidable

impact of thermal noise—even though miniaturising the oscillators allows an im-

provement in signal-to-noise ratio (SNR)[152], the fact remains that a strong

response to external forces entails susceptibility to thermal noise. Typically the

impact of this noise is reduced by operating at cryogenic temperatures or employ-

ing long averaging times (for example, the system of Rugar et al.[149] operated

at 1.6 K and still required 13 h of integration time per spatial point), but these

techniques are infeasible in many cases. The use of cryogenics both adds techni-

cal complexity and is unsuitable for applications requiring specific environmental

conditions, such as liquid property measurements[153] or biomaterial sensing[154].

Long averaging times are undesirable whenever a high measurement bandwidth

is necessary, for example when detecting transient signals or in high-resolution

imaging applications.

An alternative to passive cryogenic cooling is active cooling, for example via
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electrical[155] or optical[140, 141, 156, 157] feedback cooling, laser cooling[158] or

cavity cooling[159]. These approaches all work by actively damping the motion of

the oscillator. While it is clear that such a scheme reduces the oscillator’s response

to thermal noise, for a linear system it also necessarily reduces the response to the

signal (the cooling has no way to distinguish between noise and signal), meaning

there is no improvement in SNR[160]. Note that for non-linear systems this is

not the case. For example, if a system exhibits a poorly-understood non-linearity

at high amplitudes then active cooling can be used to ensure that measurements

are taken within the linear regime, which can lead to a fundamentally improved

SNR[161]. However, in this chapter we concern ourselves only with linear systems,

for which no improvement in SNR is possible via stationary active cooling.

There has been much debate as to whether or not this form of stationary

cooling has any benefit at all for sensing applications with linear systems[91, 162,

163]. Even though no SNR improvement is possible, the use of active cooling

means that the oscillator’s energy changes more quickly in response to both the

signal and noise, which appears to reduce the necessary averaging times and thus

increase measurement bandwidth[91]. However, this is true only if the signal is

estimated by averaging the oscillator energy; if the signal is instead extracted

from the raw oscillator response via a different process then it is not clear that

the necessary averaging time is reduced. Indeed, it turns out that using an

algorithm such as Wiener[164] or Kalman[165] filtering on the raw measurement

record yields an optimal estimator whose bandwidth is unaffected by the presence

or absence of active cooling[162]. In fact it has been shown that, for a linear

system with known dynamics, an arbitrary linear feedback protocol can actually

be simulated by post-processing the measurement data[92]. This is actually quite

intuitive: in the feedback cooling case we make measurements and feed those

back into the system, but if we know the dynamics of the system then we could

instead simply keep track of how the oscillator would have responded to feedback.

Put another way, for a given averaging time we will obtain a certain amount of

information from the system regardless of whether we use feedback. Provided we

extract that information appropriately, the use of feedback is thus irrelevant. In

theory, therefore, feedback cooling cannot yield any fundamental advantage over

simply using a different estimation scheme. On the other hand, these filtering

and simulation techniques require knowledge of system parameters, which may

be difficult to determine precisely and, especially in nanomechanical systems,



72 CHAPTER 4. FEEDBACK COOLING AND FILTERING

may actually vary during the measurement process[163, 166]. To summarise the

arguments, it is not clear whether stationary active cooling yields any bandwidth

advantages for linear nanomechanical sensors in practice, but it is well-accepted

that regardless of estimation strategy no enhancement of SNR is possible.

Outside the stationary regime, however, the SNR obtained with a basic en-

ergy averaging technique can be enhanced via feedback cooling. A non-stationary

scheme, in which the cooling is turned off immediately before the signal arrives,

causes the oscillator to respond to the signal while still in the process of rethermal-

ising. Provided the averaging time is short relative to the rethermalisation time of

the oscillator, this scheme yields a significant reduction in noise with little effect

on the signal[160]. That is, for short, impulsive signals it is in theory possible to

improve SNR by employing a non-stationary feedback cooling scheme.1 However,

once again it is expected that an equivalent enhancement of SNR can be attained

simply by using a different estimation strategy—even a non-stationary feedback

scheme applied to a linear system can be simulated via post-processing[92].

In this chapter we investigate the issue of SNR enhancement using non-

stationary feedback and estimation schemes. We consider a nanomechanical

system consisting of a nanowire that can be precisely detected and actuated

optically. We use this system as an ultra-sensitive force sensor, and compare its

performance in several different scenarios: with a basic energy averaging estima-

tor in the presence and absence of physical non-stationary feedback cooling, with

the same estimator applied to the measurement record obtained from simulating

that cooling scheme during post-processing (we refer to this simulation as virtual

cooling), and using a non-stationary Kalman filter-based estimator. We find that

feedback cooling, virtual cooling and Kalman filtering all provide a comparable

and significant enhancement in SNR over the basic energy averaging approach.

4.2 A nanowire-based optomechanical force sen-

sor

In this section we introduce the system used for the analysis. A schematic of the

full system, including the feedback control, is shown in Fig. 4.1. We will discuss

1Note that by employing a cyclic cooling strategy—where cooling is frequently turned on and
off—one can achieve an improvement in SNR even if the arrival time of the signal is unknown,
because on average the reduction in noise is greater than the reduction in signal[160].
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Figure 4.1: Schematic of nanowire-based optomechanical force sensor. The
nanowire, which is attached to a tungsten needle, is mounted on a nanoposition-
ing stage inside a vacuum chamber. A microscope objective (×40, NA = 0.65) is
used to focus the detection, feedback and signal lasers on the nanowire. The de-
tection laser is focused on the tip of the nanowire and is reflected with negligible
impact on its position, while the feedback and signal lasers are focused closer to
the mounting point and drive the nanowire. The detection arm performs homo-
dyne measurement of the nanowire deflection by interfering the beam reflected
from the nanowire with a local oscillator. The homodyne signal is passed through
analog filters to adjust the phase before being fed to an acousto-optic modulator
(AOM) in the feedback arm, which modulates the power of the feedback beam.
In the signal arm an impulse signal modulated at the mechanical resonance fre-
quency is applied to an AOM, which modulates the power of the signal beam and
thus drives the nanowire.
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(a)

(b) (c) (d)

25 µm

1 µm 1 µm 1 µm

Figure 4.2: Scanning electron microscope images of (a–c) a regular Ag2Ga
nanowire and (d) a gold-coated nanowire. Gold-coated nanowires were used for
the force sensor due to their higher scattering efficiency. In the sensor, the detec-
tion beam is focused on the tip of the nanowire (shown in (c)), while the feedback
and signal beams are focused closer to the mounting point (shown in (b,d)).

each component of this setup in more detail in the following sections.

4.2.1 Nanowires

The mechanical oscillators used in our system are gold-coated silver-gallium

(Ag2Ga) nanowires manufactured by NaugaNeedles LLC[167]. The nanowires

are grown by dipping a silver-coated tungsten needle into a drop of liquid gallium

at room temperature, retracting the needle slightly, and then waiting for a period

of seconds to minutes while the gallium meniscus drains away[168]. This process

yields a silver-gallium nanowire with size ranging from around 20 µm to 60 µm in

length and 50 nm to 200 nm in diameter. To improve detection efficiency, which

depends on the amount of light scattered from the surface, the nanowires are

then coated with around 50 nm of gold. Scanning electron microscope images of

two nanowires are shown in Fig. 4.2.

The gold-coated nanowires used in the system typically had effective masses on

the order of picograms, mechanical frequencies of roughly 300 kHz and damping

rates ranging from 10 kHz at ambient pressure down to 0.8 kHz in vacuum. The

latter corresponds to a mechanical quality factor of almost 400. See Guccione et

al.[169] for a thorough characterisation of these nanowires.
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4.2.2 Detection

The nanowire deflection is determined by illuminating the tip of the nanowire with

a weak “detection” laser and measuring the phase shift of the reflected beam via

homodyne detection[156]. Any vibration of the nanowire along the optical axis

causes a change in path length experienced by the detection laser, and thus a

phase shift relative to the reference beam. The sensitivity of this scheme depends

on the angle of vibration relative to the optical axis: as the oscillation becomes

further misaligned from the optical axis the detection sensitivity decreases, until

the axes are orthogonal at which point the vibration cannot be detected at all.

4.2.3 Actuation

To perform feedback control and to apply an impulsive signal to be measured we

actuate the nanowire by illuminating it with a ∼1 mW laser. Incidence of such

a laser on the nanowire causes two main effects: a radiation pressure force due

to the transfer of momentum from photons to the nanowire, and a rise in bulk

temperature due to absorption of photons. We estimated the temperature rise to

be on the order of 10 K, which is sufficient to cause thermally-induced bending of

the nanowire due to the different thermal expansion rates of the gold and silver-

gallium layers[170]. This bending is an instance of the bolometric effect [171].

Using the aforementioned detection process we determined the deflection to be

∼20 nm for a 1 mW incident beam, which implies a bolometric force of ∼10 nN.

This is orders of magnitude higher than the radiation pressure force, which is on

the order of 5 pN. Consequently, the dominant force exerted by the laser on the

nanowire is from the thermal response to photon absorption.

While photothermal forces are typically slow due to finite thermal conductivi-

ties, they can be significantly faster in nanoscale objects than bulk materials[172].

Specifically, the response time for a long cylinder is given by r2/4κ, where r is

the radius and κ is the thermal diffusivity[173]. Estimating κ ≈ 10−4m2 s−1 (as

per Takata et al.[174]) yields a thermal response time of nanoseconds, which is

significantly faster than the timescale of the mechanical oscillations (which are

on the order of microseconds).
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4.2.4 Feedback control

As discussed above, actuation of the nanowire via the bolometric force is sig-

nificantly faster than the mechanical oscillations. Consequently, within a single

oscillation we can detect the nanowire displacement, apply a gain and phase shift

to the measurement, and feed the result back to the nanowire via the feedback

laser. Choosing the gain and phase appropriately allows us to modify the effective

oscillator parameters.

Note that the only factors limiting the bandwidth of the feedback are the speed

of the electronics and the response time of the bolometric force, both of which are

significantly faster than the nanowire’s mechanical resonances. A consequence of

this is that many mechanical resonances can be addressed simultaneously.

Cooling

Our primary interest in feedback control is in using it to cool the motion of the

nanowire and thus reduce the effect of thermal noise. To achieve this we employ

the cold damping technique[157], in which the feedback phase is chosen to apply

a force proportional to the oscillator velocity. Specifically, let us consider the

behaviour of a single mode of oscillation under the influence of feedback with a

fixed gain. Writing the effective gain (taking into account electronic gain, losses

in the feedback loop, and so on) as −gγm, where g is a dimensionless gain factor

that is effectively constant within the feedback bandwidth, γ is the linewidth of

the mode and m is the effective mass, the force applied to the nanowire is

Ffb(ω) := −gγm× iωx(ω), (4.1)

where x(ω) is the displacement in the frequency domain, and we have recalled

that the quantity iωx(ω) gives the velocity in the frequency domain. Let us now

consider the nanowire to be acted on by an additional external force Fext, so its

motion is given by

x(ω) = χm(ω) (Fext(ω) + Ffb(ω)) , (4.2)

where

χm(ω) :=
[
m
(
ω2

m − ω2 + iγω
)]−1

(4.3)



4.2. A NANOWIRE-BASED OPTOMECHANICAL FORCE SENSOR 77

is the mechanical susceptibility. Using Eq. (4.1) we may rewrite this in the form

x(ω) = χeff(ω)Fext(ω), (4.4)

where the effective susceptibility χeff is given by

χeff(ω) :=
[
m
(
ω2

m − ω2 + i(1 + g)γω
)]−1

. (4.5)

That is, the presence of feedback causes a gain-dependent shift in the mode’s

linewidth. For example, a positive g causes an increase in effective damping

(that is, cooling) while a negative g causes a decrease (heating).

In practice we achieve cooling by manually adjusting the gain (by varying the

laser power) and phase (using an adjustable analog bandpass filter on the detected

displacement signal) of the feedback loop in order to minimise the power spectrum

of the nanowire at its resonances.

In Fig. 4.3 we show the power spectral density (PSD) of the measured dis-

placement for a nanowire with two proximate fundamental modes, as a function

of feedback gain (laser power). This plot demonstrates that the feedback sys-

tem is indeed able to cool the vibration significantly, and moreover that multiple

modes can be cooled simultaneously.2

We can also estimate the effective temperature of the modes under the influ-

ence of feedback cooling. For a gain factor g small enough that the amount of

measurement noise fed back into the system is negligible, the PSD of the measured

displacement for a single mode is approximately given by[175]

S(ω) =
2γkBT0

m

1

(ω2
m − ω2)2 + (1 + g)2γ2ω2

, (4.6)

where ωm, γ and m are as defined above and T0 is the initial temperature. These

parameters are known, so we may plug them into the expression and then estimate

the gain g required to match the predicted PSD S to the observed PSD. Next we

observe that

S(ω) =
2γ(1 + g)kBT0(1 + g)−1

m

1

(ω2
m − ω2)2 + ((1 + g)γ)2ω2

, (4.7)

2In fact, modes as high as 2 MHz can be affected, but for the purposes of sensitivity en-
hancement this is irrelevant since those parts of the spectrum are filtered out. See Hosseini et
al.[138] for more details on broadband cooling in this system.
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Figure 4.3: Power spectral density (PSD) of the nanowire displacement for vary-
ing feedback laser power. The normalisation factor for the spectrum, which con-
verts the arbitrary measured units into physical units shown here, was determined
by integrating the area under the spectrum in the absence of any feedback and
comparing it with the result expected from the equipartition theorem.
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Figure 4.4: Effective temperature versus feedback laser power for the two fun-
damental modes. The error bars are calculated by propagating the estimated
uncertainty in the gain g.

which is to say that the spectrum for gain g, temperature T0 and damping γ is the

same as that for an oscillator without feedback but at temperature T0(1+g)−1 and

damping γ(1 + g). That is, applying a gain g effectively reduces the temperature

of the oscillator to T0(1 + g)−1. Using this observation we may determine the

effective temperature as a function of laser power, as shown in Fig. 4.4. Thus we

see that cooling down to an effective temperature of ∼10 K is possible with the

feedback system.

4.2.5 Force sensing

To test the basic system’s performance as a sensor for impulsive forces we use the

signal laser to apply a 0.1 ms signal pulse modulated at the mechanical frequency

(∼340 kHz for the specific nanowire used, which, unlike the nanowire used for the

cooling plots above, has a single distinguished fundamental mode), while tracking

the oscillator displacement via the detection system. From this measurement we

estimate the energy at each timestep after the pulse arrival. The signal quantity

is then given by the average of this energy over the time since the pulse was

applied. This approach to signal extraction is known as energy averaging. For a

sensor the figure of merit is the SNR, so to obtain the noise we apply exactly the

same procedure in the absence of any impulsive force. The SNR is then given by
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Figure 4.5: Comparison of raw and processed (bandpassed and downshifted)
measurements for a randomly-chosen trace (with signal). The displacement units
are arbitrary. The shaded area indicates when the signal is applied.

the ratio of these two quantities.

Note that, in practice, before performing the energy averaging we numeri-

cally filter the raw displacement to a bandwidth of 40 kHz about the mechanical

frequency (that is, between 320 kHz and 360 kHz), and downshift to the 0 kHz–

40 kHz band. The effect of this processing is shown in Fig. 4.5. We see that the

low-frequency locking noise is eliminated, and that the resulting trace oscillates

at the downshifted mechanical frequency ∼20 kHz.

Sample processed traces with and without a signal are shown in Fig. 4.6.

The behaviour changes abruptly when the signal is applied after ∼0.9 ms: the

oscillator energy quickly increases until the signal is turned off after 0.1 ms, after

which the energy gradually decays back to its equilibrium value.

Fig. 4.7 shows the sensitivity results for the basic system, in the absence of

any feedback cooling or more advanced estimation techniques. We see that, as

expected, the signal and thus SNR increase as the force is being applied, because

this increases the energy of the oscillator (note that the increase continues for

a short time afterwards due to the fact that we use the average energy). As

the energy decays after the force has been turned off, the signal and SNR both

gradually decrease. The noise curve remains effectively constant across the full

averaging period, since in this case the oscillator is being driven only by stationary

thermal noise.



4.2. A NANOWIRE-BASED OPTOMECHANICAL FORCE SENSOR 81

−0.4

−0.2

0.0

0.2

0.4

D
is

p
la

ce
m

en
t

(a
.u

.)

Without signal

Displacement√
Energy

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (ms)

−0.4

−0.2

0.0

0.2

0.4

D
is

p
la

ce
m

en
t

(a
.u

.)

With signal

Figure 4.6: Sample traces without and with signal, showing both the displacement
and estimated energy. The units are arbitrary, and the square root energy is scaled
to displacement units.
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Figure 4.7: Signal, noise and SNR for the basic sensor using energy averaging
in the absence of feedback cooling. The signal and noise give the average values
over 150 individual runs. The SNR is simply the ratio of the signal and noise
curves. The signal and noise are shown in the same arbitrary energy units.

Force resolution

By calibrating appropriately we can determine the actual force resolution of the

sensor.

Let us consider the displacement x(t) of the oscillator in the presence of ther-

mal noise and an impulsive monochromatic signal F (t) of magnitude F0, duration

tF and frequency ωm. We seek to determine the minimum F0 such that this force

is detectable.

Denote by 〈·〉τ the average of some quantity over the time τ since the signal

was applied, further averaged over several independent traces. Denote by std [·]τ
the standard deviation of that average in the distribution over the traces. We

will show how F0 can be extracted from the statistics of x2 (which is an unbiased

estimator for the oscillator energy).

We may write x(t) = x̃(t) + xF (t), where x̃(t) describes the motion due only

to thermal forces and xF (t) describes the response to F (t). Assuming we average
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over sufficiently many traces we have 〈x̃xF 〉τ ≈ 0 and thus

〈
x2
〉
τ
≈
〈
x̃2
〉
τ

+
〈
x2
F

〉
τ
. (4.8)

We therefore consider the signal to be detectable via energy averaging if 〈x2
F 〉τ is

at least std [x̃2]τ . That is, the minimum-detectable signal satisfies

〈
x2
F

〉
τ

= std
[
x̃2
]
τ
. (4.9)

We can now determine the force required to trigger such a response. The time

response xF of the system to the force F is given by

xF (t) =
F0√
2π

∫ tF

0

χm(t− t′) sinωmt
′dt′, (4.10)

where

χm(t) := F−1 (χm(ω)) (t) = F−1
([
m
(
ω2

m − ω2 + iγω
)]−1

)
(t) (4.11)

is the mechanical susceptibility in the time domain. Therefore

〈
x2
F

〉
τ

:=
1

τ

∫ τ

0

xF (t)2dt =
1

τ

∫ τ

0

F 2
0

2π

(∫ tF

0

χm(t− t′) sinωmt
′dt′
)2

dt. (4.12)

Rearranging, we obtain

F0 =

√√√√ 2πτ 〈x2
F 〉τ∫ τ

0

(∫ tF
0
χm(t− t′) sinωmt′dt′

)2

dt
. (4.13)

From Eq. (4.9) we thus see that the force resolution (that is, the smallest F0 such

that the signal is detectable) for energy averaging is given by

F0 =

√√√√ 2πτ std [x̃2]τ∫ τ
0

(∫ tF
0
χm(t− t′) sinωmt′dt′

)2

dt
. (4.14)

This yields the results shown in Fig. 4.8, and suggests an optimal force resolu-

tion of ∼3× 10−16 N. The existence of an optimal averaging time (in this case

∼0.2 ms) can be understood as follows. The ability to resolve a perturbation
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Figure 4.8: Estimated force resolution for the basic sensor.

above the noise floor improves monotonically with averaging time (since more

noise can be averaged away), so one may expect very long averaging times to be

advantageous. However, the energy of the oscillator increases for 0.1 ms while

the signal is applied, and then starts decreasing back to its thermal equilibrium

value. It follows that the average energy increases for slightly longer than 0.1 ms,

but then starts to decrease asymptotically towards the equilibrium value. We

find that this decay in signal is faster than the reduction in noise floor, which is

to say that the benefits of a low noise floor associated with long averaging times

are outweighed by the limitations of a small signal. It follows that sensitivity

is optimised at intermediate averaging times, in the vicinity of the peak average

signal energy.

4.3 Sensitivity enhancement

The system described in Section 4.2 is considered as the basic force sensor. In

this section we consider three methods for improving its performance. We first

describe each of the methods, and then present and discuss the results of apply-

ing them to the system. We will see that all three methods yield a significant

improvement in sensitivity.

4.3.1 Physical feedback cooling

As discussed in Section 4.1, it is well-known that stationary feedback cooling can-

not enhance the SNR of a sensor, since the cooling cannot distinguish between
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Figure 4.9: Scheme for sensitivity enhancement via non-stationary feedback cool-
ing. The oscillator is cooled for ∼1 ms, then the cooling turned off and a 0.1 ms
pulse (modulated at the mechanical frequency) applied. The oscillator energy is
averaged from the moment the pulse is applied.

signal and noise and thus must reduce the two together. However, it has been

suggested[160] that a non-stationary strategy can provide an advantage, at least

in the context of the basic energy averaging estimator. Specifically, if the feed-

back cooling is turned off just before the signal arrives then the signal is largely

unaffected but, until the oscillator completely rethermalises, the noise is reduced.

Thus if the averaging time is short relative to this rethermalisation time (which is

described by the oscillator linewidth—roughly 0.8 kHz in our case, corresponding

to a rethermalisation time on the order of 1 ms) then an enhancement in SNR

should be possible.

We tested this proposal. For each experimental run we used the same energy

averaging procedure as above, but applied feedback cooling for ∼1 ms before the

pulse arrived. The scheme is shown in Fig. 4.9, and sample traces in Fig. 4.10.

We note the small oscillations and corresponding low energy when the feedback

cooling is being applied. When the cooling is turned off in the absence of the

signal, the energy slowly increases towards its equilibrium point. In the case

that the signal is applied, the energy first increases rapidly and then decays back

towards the usual value, as in the basic system. It is in the initial post-cooling

period of low noise and high signal that we expect an enhancement in SNR over

the basic system.

4.3.2 Virtual feedback cooling

The second approach we consider is to simulate the physical feedback cooling dis-

cussed in the previous section by post-processing the measurement data obtained

in the absence of any feedback. This approach is based on the idea presented by

Harris et al.[92], that, for a linear system with known dynamics and satisfying the
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Figure 4.10: Sample traces without and with signal in the presence of feedback
cooling, showing both the displacement and estimated energy. The units are
arbitrary, and the square root energy is scaled to displacement units. The shaded
orange and purple areas indicate when feedback cooling and signal are applied,
respectively.
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property that all unknown forces are independent of position, any linear feedback

protocol can be simulated via post-processing.

We refer the reader to Harris et al.[92] for the full derivation of the possibility

of this simulation, but as mentioned in Section 4.1 it can be understood intuitively.

Consider the simplified case where we apply a single impulsive feedback signal at

a particular time, based on some prior measurements of the system. Rather than

actually applying this feedback, we could instead simply calculate the feedback

we would have applied, and predict the response of the system to that feedback

in the absence of all other forces. By linearity and the assumption of position-

independence of unknown forces, we can then simply add this response to the

observed trajectory to obtain the exact trajectory we would have observed had

feedback been applied. For more realistic feedback protocols involving more than

a single pulse we apply the same argument, but now when calculating the feedback

we would have applied at each timestep we also take into account the response

of the system to feedback applied at previous timesteps.

More precisely, let x(t) be the position of the oscillator at time t in the absence

of any feedback. Let y(t) be the trajectory we would have observed had feedback

been applied. We will show how y can be determined from x.

Since we are interested in simulating the cold damping described in Sec-

tion 4.2.4 we consider the particular case of a linear feedback protocol depending

only on the oscillator velocity at the current time, and assume without loss of

generality that the mean oscillator position is 0. The feedback force at time t can

thus be written as Ffb(t) = G(t)ẏ(t), where G(t) is the gain at time t. To apply

the theory of Harris et al.[92] we rewrite this in the kernel form

Ffb(t) =

∫ t

0

−G(t)δ̇(τ − t)x(τ)dτ, (4.15)

where we have introduced the derivative of the delta function δ̇.

Denoting by χm(t) the (Fourier transform of) the mechanical susceptibility as

in Section 4.2.5 we may now define the transfer function

h(t, τ) :=

∫ ∞
−∞
−G(t′)δ̇(τ − t′)χm(t− t′)dt′, (4.16)

which describes the response of the oscillator at time t to the feedback force

resulting from its position at time τ . The theory of Harris et al.[92] now asserts
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the following relationship between x and y:

y(t)−
∫ t

0

h(t, τ)y(τ)dτ = x(t). (4.17)

Again, this result is quite intuitive: it simply states that the signal in the absence

of feedback can be obtained by considering the signal with feedback and sub-

tracting the combined response of the system to all prior feedback. In practice

we must solve this Fredholm equation for y (given x), and the simplest way to

achieve this is by temporal discretisation. Specifically, we sample x, y and h at

some large number of timesteps (in our case we use 1000), and collect the values

into vectors x and y and a matrix H, which yields the matrix equation

y −Hy = x (4.18)

y = (I −H)−1x, (4.19)

where I is the appropriate identity matrix. This equation allows us to determine

y, the measurement record we would have obtained had we used feedback, from

x, the measurement record we actually observed in the absence of feedback.

To apply this method in our scenario we simply need to specify the feedback

gain G(t) for our particular feedback protocol. As in Section 4.2.4 we consider

an effective gain of the form −gγm, where g is a fixed gain factor, but now we

switch off the feedback after a particular time t0. That is,

G(t) =

−gγm t ≤ t0

0 t > t0.
(4.20)

With this choice, the transfer function h becomes

h(t, τ) =

∫ t0

−∞
gγmδ̇(τ − t′)χm(t− t′)dt′

=

−gγmχ̇m(t− τ) τ ≤ t0

0 τ > t0.
(4.21)

From this we may determine the matrix H and thus the transformation mapping

the uncooled measurement record x to the virtually cooled record y. From y

we determine the SNR via energy averaging, exactly as in the physical feedback
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cooling case.

The only remaining step is to specify values for the relevant parameters,

namely ωm, γ and g. We determined these as follows. First, the parameters ωm

and γ were roughly estimated from the raw data, and then the gain g was varied

in order to maximise the associated SNR. The estimates of ωm and γ were then

repeatedly adjusted, interleaved with optimisation of g, in order to maximise the

peak SNR. The final values we used were ωm/2π = 339.61 kHz, γ/2π = 0.54 kHz

and g = 55.

Sample traces filtered with this method are shown in Fig. 4.11. We see that

the virtual cooling is effective at damping the motion while turned on. After

the cooling is turned off we observe similar behaviour to the physical feedback

cooling case: with no signal the oscillations gradually increase in amplitude back

to what we would observe with no cooling, while with signal the oscillator quickly

responds to the force and the oscillations closely match what we would have

observed without any feedback. Therefore, as with physical feedback cooling,

we expect an enhancement in SNR in the period immediately after the cooling is

switched off, since this corresponds to reduced noise but largely unaffected signal.

4.3.3 Kalman filtering

The final approach to sensitivity enhancement that we consider takes a slightly

different approach.

Estimation via prediction

Feedback cooling attempts to improve the sensitivity of energy averaging by re-

ducing the energy of the oscillator in the absence of a signal and thus reducing

the noise. An alternative method for improving sensitivity is to integrate a quan-

tity other than the raw oscillator energy. Indeed, it is not surprising that simply

integrating the raw energy is suboptimal, since this approach makes no use of the

knowledge of the prior state of the system—in particular, it ignores the fact that

the oscillator will continue to oscillate in the same manner (with a gradual decay

in amplitude) unless acted on by an external force. This observation suggests

that an alternative approach to detecting a force is to predict how we expect the

oscillations to continue, and track the difference between these and the actual
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Figure 4.11: Sample traces without and with signal for virtual cooling, showing
both the unfiltered and filtered measurement records. The green shading indicates
when virtual cooling is applied.
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oscillations.

More quantitatively, let us consider the displacement x(t) of the oscillator

in the presence of thermal noise and (potentially) an impulsive force. As in

Section 4.2.5 we may write x(t) = x̃(t) + xF (t), where x̃ describes the motion

due only to thermal forces and xF describes the response of the oscillator to the

impulsive force. We observe x, and our goal is to determine xF .

If we use feedback cooling then x̃(t) ≈ 0 (for suitable t) and thus x(t) ≈ xF (t),

which is to say the observed signal is a good proxy for the signal of interest.

Instead let us suppose that x̃(t) is large but we have some prediction x̃′(t) of

x̃(t), and consider the observed prediction error ∆(t) := x(t) − x̃′(t) = (x̃(t) −
x̃′(t)) + xF (t). In particular, if the prediction accurately models x̃(t) at some

time t then we have ∆(t) ≈ xF (t) and, just like with feedback cooling, the known

signal ∆(t) is a good estimator for xF (t). That is, by predicting the oscillations

we would expect in the absence of any signal, and then comparing this prediction

to what we actually observe, we obtain a better estimate of the contribution of

the signal.

To apply this scheme in our situation, then, based on the measurements over

the initial ∼1 ms prior to the pulse arrival we must build up a prediction of

the oscillator’s future trajectory (assuming that it continues to experience only

thermal noise). Then, after the time of the pulse arrival, we track the phase-space

distance between this prediction and the measurement. When no pulse is applied

we expect the prediction to be accurate, leading to low noise, while if there is a

pulse then we expect a large prediction error and correspondingly large signal.3

To determine this prediction we use a Kalman filter [165].

Kalman filters

The Kalman filter is an algorithm that processes a noisy sequence of measure-

ments of a linear system with known dynamics in order to keep track of a

statistically-optimal estimate of its underlying state. In this section we give the

basic ideas behind the Kalman filter as they pertain to our implementation, and

refer the reader to one of the many introductory works on the topic for addi-

3We can actually consider feedback cooling to be a special case of this prediction scheme—
by pre-cooling the oscillator its predicted trajectory becomes simply x̃′(t) ≡ 0, so the observed
trajectory is identical to the “prediction error”. Indeed, the fundamental idea behind both
methods is the same: the knowledge gained by measuring the system prior to the signal arrival
can be used to partially eliminate the noise contribution from the pre-existing oscillations.
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tional background (see, for example Lewis et al.[176], Welch and Bishop[177] or

Haykin[178]). The treatment given here is based on Lewis et al.[176].

We consider a system described at each timestep k by some underlying state

vector xk ∈ Rn, evolving linearly in time according to

xk+1 = Fkxk + wk, (4.22)

where Fk is the state transition matrix and wk is the process noise term, which

is taken to be Gaussian with mean 0 and covariance Qk. Measurements of the

state are made by observing a vector

zk = Hkxk + vk, (4.23)

where Hk maps states into actual observations (which may not reveal all the

information about the state) and vk is the measurement noise term, taken to be

Gaussian with mean 0 and covariance Rk. The Kalman filter tracks an estimate

x̂k of the underlying state together with a covariance Pk describing the estimated

accuracy of the state estimate x̂k. As a concrete example, in a harmonic oscillator

system the state vector might consist of the particle’s location in phase-space,

with the observation matrix extracting the displacement. The Kalman filter

produces estimates of the phase-space location at each point in time (together

with an estimate of the uncertainty in that estimation).

At each timestep the filter typically proceeds in two stages. In the first, the

“predict” stage, it makes an a priori prediction x̂−k+1 about the system state

(together with an a priori covariance P−k+1) based on the previous estimate and

the known dynamics. More precisely, it computes the quantities

P−k+1 := FkPkF
T
k +Qk (4.24)

x̂−k+1 := Fkx̂k. (4.25)

In the second, the “update” stage, the filter receives a new measurement

zk+1 and combines this with the a priori prediction (x̂−k+1, P
−
k+1) to obtain an a
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posteriori estimate (x̂k+1, Pk+1). That is,

Kk+1 := P−k+1H
T
k+1

(
Rk+1 +Hk+1P

−
k+1H

T
k+1

)−1
(4.26)

Pk+1 := (I −Kk+1Hk+1)P−k+1 (4.27)

x̂k+1 := x̂−k+1 +Kk+1

(
zk+1 −Hk+1x̂

−
k+1

)
, (4.28)

where Kk+1 is known as the Kalman gain. The Kalman gain determines the

weighting applied to the measurement error, taking into account the uncertainties

in both the prediction and the measurement, so that a highly certain prediction

or measurement is weighted more strongly (and conversely). The filter proceeds

iteratively, with the a posteriori estimate computed in one timestep being used

as the initial state for the next.

Importantly, while these two stages usually alternate it is not necessary that

they do so. In particular, at any point we may disable the update stage (Eqs. (4.26)

to (4.28)) and instead start using the filter as a pure predictor:

Pk+1 := P−k+1 (4.29)

x̂k+1 := x̂−k+1. (4.30)

That is, to use the Kalman filter in the force sensor we perform alternating

predict/update stages up until the time of signal arrival, and after that perform

only predictions.

Implementation of the Kalman filter

Our code is available on GitHub[179], and we refer the reader there for the full

implementation details. Here we describe the most important points.

We consider the system to be a standard damped harmonic oscillator, so as

mentioned in the previous section the state consists of the position x and velocity

ẋ. We discretise to 1000 timesteps of duration dt := 2 µs each, meaning

xk := [x(k dt) ẋ(k dt)]T (4.31)

for 0 ≤ k < 1000. For the initial state x0 we used the actual position and velocity

calculated from the first two data points for each trace, although we note that in

practice it was sufficient to initialise both components to 0.
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The standard discretised state propagation matrices for a harmonic oscillator

were used, with system parameters ωm and γ initially estimated from the raw

data and then repeatedly adjusted in order to maximise performance across all

traces. The final values used were ωm/2π = 339.65 kHz and γ/2π = 0.56 kHz.

Note that these values differ slightly from those used for virtual cooling (ωm/2π =

339.61 kHz and γ/2π = 0.54 kHz). This difference is most likely due to a small

amount of over-fitting: when selecting parameters to maximise SNR calculated

over noisy data, it is possible to choose parameters that exploit any biases in

the noise in order to extract a higher SNR than what would be obtained with

perfectly accurate parameters. Moreover, the perturbations to the parameters

required for over-fitting depend entirely on the specifics of the filtering method,

so it is not surprising that the Kalman filter and virtual cooling yield slightly

different parameters. Indeed, the fact that the parameters still match very closely

indicates that any over-fitting effect was largely negligible.

We assumed the process noise wk to be a random force applied to the oscilla-

tor. Its variance was determined by simulating the behaviour of an oscillator in

the presence of such a force and choosing a variance yielding traces that looked

qualitatively similar to the actual traces. This value was fine-tuned to optimise

performance, but we found the initial estimate to be effectively optimal.

Sample filtered traces are shown in Fig. 4.12. We see that the filter closely

tracks the observed position while the updating is switched on. After the updat-

ing is turned off in the absence of signal the quality of the prediction gradually

decreases as the thermal noise slowly perturbs the system. When a force is

applied, however, the observed trajectory quickly deviates from the prediction,

leading to a large prediction error and hence a large detected signal. We note

the similarity between the prediction error of Fig. 4.12 and the cooled traces of

Figs. 4.10 and 4.11.

4.3.4 Results

In this section we present the results of applying the above enhancement strategies

to the basic force sensor.
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Figure 4.12: Sample traces without and with signal for Kalman filtering, showing
the raw trace, the Kalman filter prediction and the prediction error. The pre-
diction error is defined as the difference between the raw trace and the Kalman
filter prediction. The red shading indicates the period in which the Kalman filter
is updated with measurements. After this period no new data are passed to the
filter, and it makes predictions based solely on the measurements made in the red
area.
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Figure 4.13: Comparison of mean SNR for different methods. The dashed lines
represent the standard deviation of the mean (estimated from 150 traces).

SNR

A comparison of the SNRs obtained from the above methods is shown in Fig. 4.13.

All three methods provide a significant improvement over the basic system, thus

demonstrating that with non-stationary feedback and estimation strategies it is

indeed possible to obtain an enhancement in SNR. We see that physical cool-

ing, virtual cooling and Kalman filtering all achieve a peak SNR of roughly 21,

compared to the 7 attained by the basic energy averaging method.

Per-trace SNR enhancement

For the filtering methods—virtual cooling and Kalman filtering—we can consider

an additional measure of performance. Specifically, for each individual trace

we can determine the improvement in SNR obtained by filtering that trace as

compared to performing basic energy averaging. Note that we cannot calculate

this quantity for physical feedback cooling, since for a cooled trace there is no

corresponding “uncooled” trace. These results are shown in Fig. 4.14.
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Figure 4.14: Mean SNR enhancement factor for filtering methods. For each
trace, the enhancement factor is defined as the SNR for that trace obtained
with the filtering method divided by the SNR for that trace obtained with basic
energy averaging. The dashed lines represent the per-trace standard deviation
(calculated from 150 traces).

Force resolution

To obtain the force resolution using feedback cooling, virtual cooling or Kalman

filtering we simply scale down the raw force resolution (as described in Sec-

tion 4.2.5) by the square root of the ratio of SNR to the basic energy averaging

SNR. This process yields the results shown in Fig. 4.15, and suggests an optimal

force resolution below 2× 10−16 N for all three improved methods.

4.3.5 Discussion

We have seen that all three methods—feedback cooling, virtual cooling and

Kalman filtering—provide a significant improvement in sensitivity over the ba-

sic energy averaging approach, but there are some interesting observations that

warrant further discussion.

Apparent signal enhancement

We have explained why all three methods lead to a significant decrease in noise, at

least for short averaging times, and we have observed a corresponding increase in
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Figure 4.15: Estimated force resolution for each method.

SNR. Despite the improved SNR we would also expect a slight decrease in signal

when using feedback cooling or filtering: on average, the energy of the oscillator is

obtained by adding the energy due to the signal to the energy already present in

the system (see Eq. (4.8)), so if the latter is minimised (either by physical cooling

or filtering) then the signal should slightly decrease. SNR is still improved since

the relative reduction in noise is much larger.

We may inspect the noise and signal individually, as shown in Fig. 4.16. We

first see that, as expected, all three methods reduce the noise. More interestingly,

they also appear to increase the size of the extracted signal. We note that the

effect is particularly strong for feedback cooling, and we will discuss this further

in the next section. However, even the relatively small signal increase observed for

virtual cooling and the Kalman filter is somewhat surprising, since it is opposite

to what we would expect.

The reason this effect is possible is interference. If the response of the system

to the signal is out of phase with the existing thermal oscillations then the two

contributions destructively interfere. If the effect of the existing oscillations is

eliminated (either by minimising them via feedback cooling or filtering them

away via prediction) then no destructive interference occurs, and a larger signal

is observed. An example showing these effects is given in Fig. 4.17.

Despite this argument it is still surprising that we see the filtering methods
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Figure 4.16: Comparison of mean noise and signal for each method, averaged
over 150 traces. All quantities are measured in the same arbitrary energy units.
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Figure 4.17: Demonstration of how destructive interference of the signal with the
pre-existing thermal oscillations can be eliminated with virtual cooling (a similar
effect occurs with both physical feedback cooling and Kalman filtering). The
thermal oscillations prior to the signal arrival are out of phase with the signal,
leading to an initial reduction in energy for the unfiltered trace. With virtual
cooling, the filtered oscillator is almost at rest when the signal arrives, so no
destructive interference occurs and the observed energy is larger.
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Figure 4.18: Location in phase space immediately prior to signal arrival, for
unfiltered traces without feedback cooling. The colours indicate the maximum
energy attained by the oscillator after signal arrival. The inset shows a histogram
of the phases.

give an increased signal on average. While destructive interference is possible, we

would expect constructive interference just as often—assuming the signal always

arrives with the same phase, the type of interference depends only on the phase

of the existing thermal oscillations, and we would expect that phase to be ran-

dom. Thus, as described above, for random phases we would expect the signal

to decrease if the thermal oscillations were suppressed. However, we found that

in our experiment the phases of the thermal oscillations were not random.

To see this, we can look at the distribution of locations in phase space just

before the pulse arrives, as shown in Fig. 4.18. We first observe that, generally

speaking, points in the left half-plane achieve a higher energy than those in the

right half-plane, suggesting that constructive interference tends to occur in the

left half-plane and destructive interference occurs in the right. Moreover, the dis-

tribution of points between the half-planes is unequal—significantly more points

appear in the right half-plane and thus experience destructive interference.

The reason for this discrepancy appears to be as follows. For each of the four
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Figure 4.19: Histograms of phases at specific points in time before signal arrival
for unfiltered traces without feedback cooling.

experimental configurations (determined by the presence and absence of feedback

and signal) the system was set up to run in cycles: 1 ms of either no actuation

or feedback, followed by 0.1 ms of either no actuation or the signal, followed by a

further 0.9 ms of no actuation, and then immediately repeating from the first step.

In particular, for the uncooled signal data, if insufficient phase noise built up over

the 1.9 ms period between the signal of one cycle and the next (which is possible,

given the linewidth of <1 kHz) then the phase of the thermal oscillations prior to

signal arrival would be influenced by the phase of the signal in the previous cycle.

Since the signals had a consistent phase, this would cause a bias in the phase

of the thermal oscillations. To add further credence to this hypothesis we plot

histograms of the phases at different times leading up to the application of the

signal, as shown in Fig. 4.19. These indicate that the phase distribution spreads

out over time, but there is still a noticeable bias when the signal arrives.

To estimate the effect of this discrepancy on the results we may proceed as

follows. We divide the traces with signal into 10 buckets based on their phase

immediately prior to signal arrival, as in the inset of Fig. 4.18. We then calculate

the signal for each trace as usual, but when calculating the overall signal we first
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Figure 4.20: Average signals for each method, including for basic energy averaging
when corrected for the phase bias.

average within each bucket and then average over the buckets. That is, we ensure

that the contribution of each bucket to the overall result is equal, as opposed to

the contribution of each trace being equal. The results of this procedure are

shown in Fig. 4.20. We see that, as expected, when the phase bias is corrected

the signal for basic energy averaging is slightly higher than that obtained with

Kalman filtering and virtual cooling (we will discuss the situation for physical

feedback cooling in the next section).

We note that while this effect has caused an artificial reduction in the apparent

force sensing performance of basic energy averaging (Figs. 4.13 to 4.15) the effect

is not major—correcting for the bias increases the peak SNR from 7 to roughly

7.5, compared to around 21 for the improved methods.

To conclude this section we observe that this issue suggests another advantage

of feedback cooling and filtering methods over raw energy averaging: using these

methods the system can be run in rapid cycles without needing to worry about

the effect of one cycle on the next.
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Figure 4.21: Oscillator energy in the absence and presence of signal, without and
with feedback cooling. The energies at each point in time are averaged over 150
traces.

Increased steady-state noise with feedback

As we have discussed in Section 4.2.4, the feedback cooling of the nanowire’s

vibration occurs via the bolometric force as a result of a rise in bulk temperature

of the nanowire—that is, the vibrations are cooled by heating the nanowire.

We would therefore expect that, after the feedback cooling is turned off, there

would be more energy in the system and thus the steady-state noise would be

higher. Plotting the energy as a function of time in the presence and absence of

feedback in Fig. 4.21 we see that, indeed, when the oscillator rethermalises after

feedback cooling it has larger thermal vibrations (even after accounting for the

aforementioned phase bias in the case of an applied signal). It is possible that

this effect is what causes the virtual feedback cooling and Kalman filtering to

yield slightly higher peak SNRs than physical feedback cooling.
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Interestingly, it is clear from Fig. 4.21 that the discrepancy between the

steady-state noises with and without feedback is significantly larger in the case

of an applied signal. As with feedback, when a signal is applied there is more

energy in the system and thus the steady-state noise is slightly higher, but we

would not expect this to cause a larger discrepancy between the feedback and

non-feedback cases. This observation indicates that there is a non-linearity in

the system, whereby the steady-state heating effect of the feedback laser is mag-

nified when there is also such an effect due to the signal laser. Further analysis

and experimentation would be necessary to determine the physical source of this

non-linearity.

We note that this non-linearity is likely the cause of the apparent superior per-

formance of feedback cooling at long averaging times presented in Section 4.3.4.

The relative increase in steady-state energy in the case of an applied signal would

lead to a slower decrease in average energy after the signal was turned off (shown

in Fig. 4.21), which in turn is consistent with the slower decay in SNR and reso-

lution observed in Figs. 4.13 and 4.15.

These observations highlight an important advantage of filtering methods over

physical feedback cooling (or, more generally, numerical post-processing methods

over techniques requiring changes to the actual experimental setup): the chance

of unexpected interactions between subsystems is significantly reduced.

Extended Kalman filter for tracking frequency noise

Nanomechanical oscillators, in addition to being highly susceptible to thermal

noise, can exhibit low-frequency drifts of resonance frequency[180–183]. To de-

termine whether our system was affected by such noise we implemented a second

Kalman filter which, unlike the original filter, includes the oscillator’s resonant

frequency and linewidth in the state vector. This allows uncertainty in these pa-

rameters to be modelled, which in turn allows the parameters to be fitted by the

filter for each individual trace. For oscillators under the influence of parameter

drift this approach should thus yield superior results relative to those obtained

with a Kalman filter using fixed parameters.

There is a complication, which is that when the state vector includes the sys-

tem parameters the dynamics of the system become non-linear, and the Kalman

filter is defined only for linear systems. However, by linearising about the esti-

mated state at each timestep one obtains an algorithm capable of filtering non-
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linear systems, at the expense of the optimality properties of the standard Kalman

filter. This is known as the extended Kalman filter [176].

Our implementation of the extended Kalman filter, available on GitHub[179],

is based on the descriptions by Lewis et al.[176] and Casper[184]. We refer the

reader to those references for the full details.

To fit the filter we used the optimal parameters for the original linear Kalman

filter described in Section 4.3.3, and then attempted to adjust the uncertainties

of the resonant frequency and linewidth in order to maximise SNR. However, we

found that negligible improvement was attainable over simply using uncertainties

of zero (in which case the filter reduces to the standard linear Kalman filter),

suggesting that the nanowire in our system was not affected by low-frequency

parameter drift.

4.4 Conclusion

We have presented an ultra-sensitive nanowire-based sensor for impulsive forces,

and demonstrated three distinct but related approaches to improving its sensi-

tivity. First, by employing a non-stationary physical feedback cooling strategy—

capable of cooling the effective temperature to ∼10 K from room temperature—

the vibrations of the nanowire can be suppressed immediately prior to the arrival

of the force, meaning the thermal effects are lessened while the force is being

applied. This leads to a reduced noise and thus increased SNR. Next we ver-

ified the result of Harris et al.[92] in the non-stationary regime, by simulating

the aforementioned physical feedback protocol during post-processing of the data

obtained in the absence of any physical feedback. Finally, we implemented a

Kalman filter-based estimator, again with non-stationary behaviour, which ex-

tracts a signal by predicting the future trajectory of the oscillator (under the

assumption of no applied force) and comparing this prediction with the actual

trajectory. All three of these methods yielded peak SNRs close to 21, a factor

of roughly 3 higher than that obtained using energy averaging with no feedback

cooling. We estimate that using any of these three methods the sensor can detect

forces as small as 2× 10−16 N.

We have thus demonstrated that, as predicted by Vitali et al.[160], the SNR

obtained using energy averaging can be improved via a non-stationary feedback

cooling protocol. In addition, a comparable enhancement can be achieved in the
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absence of any feedback cooling by utilising more sophisticated estimators—such

as Kalman filtering or virtual feedback cooling—during post-processing.

Comparing physical feedback cooling with the post-processing methods, the

primary advantage of the former is that it requires relatively little knowledge

of system dynamics and parameters—the system itself perfectly “predicts” its

future behaviour—while effective post-processing requires detailed knowledge of

the system dynamics and careful parameter tuning in order to perform well.

However, post-processing is more flexible and has the advantage that it requires no

physical changes to the system. Not only does the latter typically allow for simpler

apparatus, but it can help avoid unexpected noise sources introduced by the

feedback system (such as the increased nanowire temperature in our experiment,

for example).

There are many avenues for further investigation associated with this work.

Perhaps the most obvious potential incremental improvement is the integration

of a Kalman filter into the physical feedback cooling protocol. The use of a

Kalman filter could reduce the impact of measurement noise and thus poten-

tially improve the performance of feedback cooling. More significant improve-

ments may be possible by making more radical changes to the post-processing

techniques. Specifically, all the methods we have discussed so far essentially re-

duce to filtering—that is, estimating a quantity at some time based on the prior

measurements—and thus could in theory be performed in real time (indeed, the

physical feedback cooling was performed in real time). However, if we are happy

to rely on post-processing then we could instead consider smoothing, where we

may additionally rely on future measurements when estimating the value of a

quantity at a particular time[176]. A smoothing algorithm would have access to

more information than a filtering algorithm, so would intuitively be able extract

a higher SNR and thus achieve further performance improvements[185–187].



Chapter 5

Automated optimisation with

machine learning

So far in this thesis we have considered three different classes of system, and

three corresponding optimisation techniques. Generally speaking, from chapter

to chapter the systems have become more intractable to useful theoretical anal-

ysis, and the optimisation procedures accordingly more general. In this chapter

we extend this line of reasoning to the extreme, by considering the problem of

automated optimisation of arbitrary physical systems. We introduce an algo-

rithm to perform such optimisation, and demonstrate its potential by optimising

a magneto-optical trap used for a quantum memory.

In Section 5.1 we provide some background on the general problem of auto-

mated optimisation, with a focus on quantum systems, and discuss the current

state of the field. In Section 5.2 we give a brief introduction to the relevant con-

cepts from machine learning, and then describe the algorithm we have developed.

In Section 5.3 we present and discuss the results of applying the algorithm to the

magneto-optical trap. Finally, in Section 5.4 we give some concluding remarks

together with a brief discussion of the extensive potential for future work in this

domain.

The machine learning algorithm described in Section 5.2 was developed in

close collaboration between myself and Michael R. Hush. The experimental setup

described in Section 5.3.2 was performed primarily by Aaron D. Tranter, Pierre

Vernaz-Gris, Jesse L. Everett and Anthony C. Leung (and many others have

contributed to earlier versions of the system over the course of several years).

The analysis presented in Section 5.3.4 was performed in collaboration between

107
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myself, Aaron D. Tranter, Michael R. Hush and Geoff T. Campbell.

5.1 Background

We have discussed several different approaches to optimisation of physical sys-

tems, but all of them have required some degree of detailed understanding of the

system dynamics. When such understanding is not present, either because the

system is particularly complex or simply because it is not yet well-understood,

we must revert to a process known as online optimisation, where performance is

improved via repeated interactions with the system.

The most basic form of online optimisation, and one which takes place in

almost every experiment, is manual tuning of parameters. In optics this could

be the alignment of a cavity to maximise transmission, for example. While this

approach certainly has its place, when there are any more than a few independent

parameters the space becomes too large to explore by manual brute force search.

In this case the standard procedure is to fall back to intuition or approximate

theory, and again, while this approach is often useful it tends to fall down when

the system becomes moderately complex.

When neither manual tuning nor intuition is feasible, we must turn to some

form of automated optimisation, where control of the system is given over to an

algorithmic process that accepts inputs from the system (and/or the experimen-

talists) and, based on these inputs, adjusts the parameters of the system. That

is, we must implement a certain type of optimising control system.

Control theory has a long and rich history, and has been successfully applied

to a huge range of fields, but for concreteness we will focus our attention on its

uses in optimising molecular-scale physical systems. Such systems are particu-

larly interesting for a variety of reasons: their dynamics are usually governed

by quantum mechanics, meaning theoretical treatments are often impractical for

even moderately large or complex systems due to the exponential growth of the

Hilbert space[188]; they are typically associated with small timescales, which

means that optimisation via repeated experimentation may be relatively time-

efficient; and finally, human intuition is often useless or even actively misleading.

Note that simple control systems are already used in almost all such systems—

laser frequency locking[189] is ubiquitous, for example, and the feedback cooling

from Chapter 4 is a more specialised case—but we are interested in more complex
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situations where multiple parameters must be adjusted together.

5.1.1 Quantum control

The first suggestions of control systems for quantum systems were in the 1980s,

when it was shown that certain optical pulses could be used to engineer the

likelihoods of particular molecular transitions[190–195]. These results were soon

generalised to show that the choosing of an external control field to achieve a

desired quantum state transition reduces to a minimisation problem over function

spaces[196–198]. This approach is open-loop control—an optimal pulse sequence

is first determined offline, and then later applied to the experiment. However, this

requires significant knowledge of the dynamics of the system in order to determine

(analytically or numerically) the optimal field accurately, so can become infeasible

for even moderately complicated systems.

In the early 1990s it was suggested by Judson and Rabitz[199] that this issue

could be avoided by utilising a closed-loop system, in which results from the

experiment are fed back into the control system. The control system performs

a similar optimisation procedure to that used when determining fields to use

with open-loop control, but now the optimisation is performed automatically

by the control system by feeding results from the experiment into a learning

algorithm; that is, a form of automated online optimisation is used. In this way

the experiment itself is used to exactly “evaluate” its own Schrödinger equation,

thus avoiding the need to have a good theoretical understanding of the system

dynamics.

The learning algorithm suggested by Judson and Rabitz[199] is a basic ge-

netic algorithm. Different optical pulse sequences, “individuals”, are represented

by binary numbers, and an initial random population of individuals is itera-

tively evaluated by running the experiment and measuring a “fitness function”,

which determines the effectiveness of that pulse sequence and is interpreted as

the fitness of that individual. Performance can be improved via “evolution”:

high-performing individuals are left unchanged, and the remaining individuals

are divided into pairs and mixed (their binary representations split and recom-

bined). Each individual may also undergo a small random “mutation” (that is,

a bit flip) from one generation to the next. Over time the fitness of the entire

population tends to increase, ideally converging towards a maximum.
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Soon after that seminal proposal, control systems utilising alternative opti-

misation algorithms were suggested, for example gradient descent based on fi-

nite differences[200], simulated annealing[201–203], genetic algorithms with mi-

gration[204] and downhill simplex algorithms[205–207]. These were shown to be

robust to many types of experimental noise[200, 208, 209].

The first experimental realisations of these protocols appeared in the late

1990s: genetic algorithms for optimising fluorescence[210], second harmonic gen-

eration[211], and branching ratios of photodissociation reactions[212]; and sim-

ulated annealing for optical pulse compression[203]. In the intervening years

the same general approach has been widely applied with great success, using

genetic[213–217], downhill simplex[218, 219] and gradient-based[220] algorithms.

Despite their widespread use, however, these algorithms have their drawbacks.

Gradient descent is prone to becoming trapped in local minima and, when finite

differences are used for evaluating the gradient, requires a large number of ex-

periment evaluations (since each finite differences calculation requires a separate

evaluation per dimension). Downhill simplex algorithms avoid the inefficiency

of calculating finite differences, but are similarly susceptible to local minima,

and more importantly often exhibit slow convergence for high-dimensional prob-

lems[221–224]. Genetic and simulated annealing algorithms are designed to locate

global optima, but must be carefully tuned[225–227] and again can be expensive

in terms of the number of evaluations[227–229]. Depending on the timescale of

the experiment these algorithms thus may not be suitable.

5.1.2 Optimisation via machine-learned models

An alternative approach is to perform fewer experiment evaluations at the ex-

pense of a higher computational cost on the algorithm side. Specifically, the

control system can be used to learn an input-output model describing the output

of the experiment for given input parameters, and the model then analysed to

determine suitable parameters[230, 231]. There are two ways the model can be

used. In the first, the model is inverted, which allows one to determine the inputs

necessary to cause the experiment to behave in a certain way[231, 232]. The other

approach, useful in the more common scenario in which the exact behaviour of

the system is unimportant and instead the goal is only to optimise some cost

function, is to use the model to simulate the experiment and then determine
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the optimal parameters by optimising the behaviour of that simulation[233, 234].

Optimising the simulation instead of the experiment may be more convenient (if

the experiment is slow or expensive to run) or mathematically easier (Jacobians

and Hessians may be calculable analytically, for instance).

Another important advantage of this type of algorithm is the construction

of the model of the system, which can be inspected manually. While the model

cannot (generally speaking) be used directly to extract meaningful physical pa-

rameters, it may still provide insight into the dynamics of the system[230, 233].

An alternative to learning a full input-output model of the system dynamics is

to specify a certain cost function and learn a model mapping input directly to that

cost function[235]. This allows the learning process to be simplified significantly.

In the work of Wigley et al.[235] an algorithm based on this approach, using a

Gaussian process to learn the model, was used to find optimal evaporation ramps

for Bose-Einstein condensate production. With the ramps described by a 16-

dimensional parameter space, the Gaussian process-based algorithm converged

in only 35 experimental runs, compared to 145 required by the Nelder-Mead

downhill simplex algorithm[205]. However, the time required to fit a Gaussian

process scales with the cube of the number of experimental runs[236], so this

approach is infeasible for experiments with large numbers of parameters (which

necessarily require more experimental runs to optimise).

We have filled this gap by implementing a scalable machine learning algo-

rithm for automatic online modelling and optimisation. The algorithm learns a

model for the system using an artificial neural network, which can be quickly

trained (in linear time with respect to the number of experiment runs) even for

high-dimensional spaces. Through repeated interaction with the experiment the

algorithm refines its model, and uses this to suggest high-performing parameter

sets. We demonstrate the potential of the algorithm by using it to optimise a

magneto-optical trap described by a 63-dimensional parameter space.

5.2 A scalable machine learning algorithm for

automatic optimisation

In this section we present the machine learning algorithm we have developed for

performing automated optimisation of quantum systems. The general form of
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the algorithm is as described in Section 5.1.2: by running the experiment the

algorithm learns a model of the system, which is then optimised numerically in

order to determine a new set of parameters to apply, then the experiment is run

with those new parameters, and the results are fed back into the algorithm and

the cycle repeats. The core of the algorithm is the function approximator used

to model the system, which is a type of artificial neural network.

The theory of artificial neural networks is extremely deep, and contains many

problem-specific subtleties. Rather than attempting to discuss these in full gen-

erality, we first introduce the relevant foundational theory and definitions in the

next section, before discussing our specific choices in the subsequent section. We

refer the reader to one of the many introductory textbooks on artificial neural

networks for a broader introduction to the field (we recommend Goodfellow et

al.[237] for a comprehensive account focusing on deep learning, or Bishop[238] for

a more general introduction in the context of machine learning).

5.2.1 Introduction to artificial neural networks

At the most general level, the artificial neural network is a model of computation

that processes information via a network of connected neurons. Typically each

neuron performs only a very simple function, but complex behaviour can emerge

from the interaction of many neurons. The model is inspired by the brain, with

the network of artificial neurons corresponding to the biological neurons connected

by synapses in the brain.

While there are many different types of artificial neural network, used to

perform a wide range of information processing tasks, we are concerned with

only a particularly simple class, namely the multilayer perceptron.

Multilayer perceptrons

A multilayer perceptron is a type of artificial neural network that defines a func-

tion mapping between Euclidean spaces. It consists of a finite sequence of “layers”

of neurons, with directed weighted connections from neurons in one layer to those

in the next, as shown in Fig. 5.1.

The first layer is the input layer, where external input is applied. Computation

proceeds by activating the input neurons, propagating these activations to the

first hidden layer via the weighted connections, propagating the output of that
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Figure 5.1: Sample multilayer perceptron architecture. The neurons are arranged
in layers, and there are directed weighted connections from neurons in one layer
to those in the next.

layer to the next layer, and so on until the final output layer is activated. The

result is then read from the outputs of neurons in the output layer.

More specifically, let the number of non-input layers be L ≥ 1, and let the

dimension of layer l be Dl ≥ 1 (where the input layer is the 0th layer). We will

show how the network can define a function x 7→ y : RD0 → RDL .

Denote by u0
i ∈ R the initial activation applied to the ith neuron of the input

layer, and by u0 ∈ RD0 the vector of these activations (so we have u0 ≡ x).

Similarly, denote by z0
i ∈ R the output of the ith neuron of the input layer, and

by z0 ∈ RD0 the vector of outputs (we will explain momentarily how the inputs

and outputs are related). For each neuron i of each subsequent layer l we have a

real input uli and output zli, and like the input layer we collect these into vectors

ul, zl ∈ RDl . The output of the network is simply the output of the last layer, so

y ≡ zL.

Associated with each neuron there is an activation function that determines

how that neuron maps input to output. In general these functions can vary from

neuron to neuron, but for simplicity we assume that all hidden neurons use a

single activation function α : R → R, and that all input and output neurons use

the identity function. That is, we have

zl =

α(ul) 1 ≤ l < L

ul l = 0, L
, (5.1)

where α applies element-wise.

Next we need to define how the output zl−1 of one layer relates to the input

ul of the next. In the multilayer perceptron model, each component uli is defined
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to be the weighted sum of outputs zl−1 from the previous layer plus a bias term,

where the weights are taken from the appropriate connections. That is, if for

neuron j of layer l − 1 and neuron i of layer l we denote by W l
ij ∈ R the weight

of their connection, and we collect these weights into matrices W l ∈ RDl×RDl−1 ,

then we simply have ul = W lzl−1 + bl (where bl ∈ RDl is a vector of biases).

Note that the biases can be modelled by an additional neuron with (constant)

unit output in layer l − 1, but for our purposes it is simpler to include them

separately.

Putting these together, we have

z0 = u0 = x (5.2)

ul = W lzl−1 + bl (1 ≤ l ≤ L) (5.3)

zl = α(ul) (1 ≤ l < L) (5.4)

y = zL = uL, (5.5)

which shows how the perceptron yields a function RD0 → RDL , parameterised by

the weights and biases.

It is instructive to present a simple example. In Fig. 5.2 we show a sample

network complete with weights and biases, corresponding to a function R → R.

Using a hyperbolic tangent activation function α ≡ tanh, and assuming an initial

network activation of x ∈ R, we have also labelled the input and output for each

neuron. Specifically, the input to a neuron is the weighted sum of the outputs of

neurons in the previous layer (weighted by the corresponding connections), plus

the bias of that neuron. The output of a neuron is obtained by applying the

activation function to its input (and we recall that the activation function for

the first and last layers is the identity, see Eq. (5.1)). The input to the left-most

neuron is defined to be x (the initial activation of the network), and the output of

the entire network is defined to be the output of the right-most neuron. Therefore

the network represents the function

x 7→ tanh(0.5x)− tanh(x− 5)− 1. (5.6)

In terms of the formalism above, we have L = 2, D0 = D2 = 1 and D1 = 1.
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xx

0

tanh(0.5x)0.5x

−5

tanh(x− 5)x− 5

−1

tanh(0.5x)− tanh(x− 5)− 1tanh(0.5x)− tanh(x− 5)− 1

0.5

1

1

−1

Figure 5.2: Sample multilayer perceptron. The weights are shown on each con-
nection, and the biases shown above each neuron (all in bold). Assuming a
hyperbolic tangent activation function (α ≡ tanh) and an initial activation x ∈ R
into the network, we have shown, for each neuron, its total input on the left and
its output on the right.

The weights and biases are

W 1 =

[
0.5

1

]
, b1 =

[
0

−5

]
, W 2 =

[
1 −1

]
, b2 =

[
−1

]
, (5.7)

and (for a network input x ∈ R) the inputs and outputs of each layer are

u0 =
[
x
]
, z0 =

[
x
]
,

u1 =

[
0.5x

x− 5

]
, z1 =

[
tanh(0.5x)

tanh(x− 5)

]
,

u2 =
[

tanh(0.5x)− tanh(x− 5)− 1
]
, z2 =

[
tanh(0.5x)− tanh(x− 5)− 1

]
.

(5.8)

Function approximation

The multilayer perceptron model can be used as a powerful function approxima-

tor. Suppose there is an unknown function F : S ⊂ Rk → Rm (often referred to as

a cost landscape or landscape) that we wish to approximate based on some train-
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ing data given by pairs D = {(xn,yn = F (xn))}Nn=1 (where the xn are sampled

from the domain of F ). We may proceed as follows.

First, we choose and fix the network’s hyperparameters (parameters describing

the behaviour of the algorithm itself, as distinct from parameters determined

by the algorithm): the topology (number of layers L and number of neurons

per layer {Dl}Ll=0, where of course we must have D0 = k and DL = m) and

activation function α. Once these hyperparameters are fixed, the perceptron

defines a class of functions PW : Rk → Rm parameterised by the weights and

biases W := {W l}Ll=1 ∪ {bl}Ll=1 of the network (these will henceforth be referred

to simply as the weights of the network, since as we have mentioned the biases

may simply be considered a particular type of weight).

Next the problem is to choose the appropriate set of weights so that PW

is as close to F as possible. The usual approach for achieving this goal, and

the technique we will use here, is to choose the weights via machine learning : we

make an initial guess for the weights, and then use the training data to iteratively

update that guess. In this way we are “learning” an approximation for F from

the data.

Both steps of this procedure can have a significant impact on the performance

of the approximator, but they also contain many problem-specific subtleties. We

briefly discuss the most general considerations in the following sections, and give

more specific information in Section 5.2.2 when we discuss our algorithm. The

most well-established and general part of this process is the learning of model

weights once the hyperparameters are fixed.

Learning model weights

Recall that we are trying to approximate an unknown function F : S ⊂ Rk → Rm,

and to do this we have some training data D = {(xn,yn = F (xn)}Nn=1 and a class

of candidate networks PW : Rk → Rm parameterised by the network weights. The

problem is to choose the set of weights so that PW is as close to F as possible.

We can frame this problem as an optimisation problem. That is, we seek to

choose the weights to minimise an objective O(W ;D) that measures how well

(or rather, how poorly, since we seek to minimise the objective) the approximat-

ing function PW matches F . In the simplest case the objective is given by a loss

function measuring the difference between the actual and approximating function

values on the training data. For regression (where the function to be approxi-
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mated is real-valued as opposed to binary-valued) the typical loss function is L2.

The L2 loss on a single training example (x,y) is defined to be

L(x,y;W) := |y − PW(x)|2 , (5.9)

where |·| : Rm → R is the standard L2 vector norm. The loss on the whole

training set is the average of the losses on each individual example:

L(W ;D) :=
1

N

N∑
n=1

L(x,y;W). (5.10)

Typically we include an additional L2 regularisation term R in the objective,

which penalises high weights. This is a simple way to incorporate a prior be-

lief into the optimisation procedure; the belief in this case being that the cost

landscape does not vary too sharply. Specifically, we choose a positive real hy-

perparameter λ and define the penalty as

R(W) := λ
L∑
l=1

∣∣W l
∣∣2 , (5.11)

where again |·| is the standard L2 norm.

Thus we arrive at the objective that can be minimised in order to learn the

model weights:

O(W ;D) := L(W ;D) +R(W) =
1

N

N∑
n=1

L (xn,yn;W) + λ

L∑
l=1

∣∣W l
∣∣2 . (5.12)

Even though the objective function is usually highly non-convex[239], it can

typically be optimised effectively using variations of gradient descent. The most

common such variation is stochastic gradient descent [240]. In this approach,

instead of calculating the loss over the whole training set at each iteration, we

consider only a single training example at a time, and cycle through the full

training set over a period of N iterations (after which we shuffle the training set

and cycle through again). That is, at each iteration s we update each weight
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wi ∈ W according to

ws+1
i = wsi − δ

∂O (W ; {(xn,yn)})
∂wi

∣∣∣∣
W=Ws

, (5.13)

where n iterates repeatedly over the N training examples (in a random order), δ

is a step size hyperparameter and Ws denotes the set of weights determined at

iteration s.1 This introduces randomness into the procedure while still tending

to reduce the total loss. In practice pure stochastic gradient descent can be

computationally inefficient, so instead it is more common to train in mini-batches,

where the training set is split randomly into batches of a fixed small size, and the

gradient updates for each step are calculated from a single batch. Typically we

also prefer a more sophisticated update over the vanilla gradient descent update

of Eq. (5.13), such as AdaGrad[242] or Adam[243], since these set the step size

adaptively and therefore require less manual tuning.

If too many iterations of gradient descent are performed, the learning proce-

dure can cause the model to over-fit, where it starts to fit noise in the training

data. In this case the quality of the approximation is actually degraded, in the

sense that the model will fail to accurately predict the values corresponding to

parameters outside the training data. The simplest way to avoid over-fitting

is early stopping, where training is stopped before the weights have completely

converged[244]. The inclusion of the L2 regularisation penalty also alleviates

this problem to some degree, and there are more modern techniques such as

dropout[245] and batch normalisation[246] that have seen empirical success. We

discuss in Section 5.2.2 the steps we take to avoid over-fitting in our algorithm.

Regardless of how effectively the weights are learned, the performance of the

approximator depends on the choice of hyperparameters. We discuss the choice

of activation function and topology in the following sections.

1 Computation of the partial derivatives of the objective with respect to the network weights
is typically performed using an algorithm known as backpropagation[241], which is a straight-
forward but elegant application of the chain rule. The loss of each training example is propa-
gated backwards through the network using the weighted connections together with the inputs
and outputs {ul, zl}Ll=0 calculated during the forward pass. During this process, the partial
derivatives with respect to each weight can be determined iteratively. We refer the reader to
Rumelhart et al.[241] or Goodfellow et al.[237] for the full details.
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Activation functions

The choice of activation function determines, at the most fundamental level, the

expressivity of the network, which describes the class of functions that can be

well approximated.

An initial observation is that for some choices of activation function the net-

work is extremely lacking in expressiveness. For example, if we choose α to be

the identity map then regardless of topology the network simply reduces to the

affine map x 7→ Wx + b, where

W = WLWL−1 . . .W 1, b = bL +WL
(
bL−1 +WL−1 (. . . )

)
. (5.14)

Indeed, even if α is an arbitrary linear function then the network again reduces

to an affine map.

However, if α is non-linear then the multilayer perceptron can be extremely

expressive. In particular, the universal approximation theorem for artificial neural

networks states that if α is bounded, continuous and non-constant then any

compactly supported real-valued function may be uniformly approximated by

a multilayer perceptron with only one hidden layer[247–249].

With this theorem in mind, it is not hard to choose an activation function

that will give rise to an expressive network, but this is not the only considera-

tion. The traditional choice is a sigmoid function, typically the logistic function

(u 7→ (1 + e−u)
−1

) or hyperbolic tangent, as shown in Fig. 5.3, since these have

beneficial theoretical properties (monotone, bounded, differentiable). However,

in practice these functions suffer from the so-called vanishing gradient problem:

since the gradient becomes close to zero when the input becomes too large or

small, the corresponding gradient descent updates in Eq. (5.13) become small

and learning slows down[250].

Instead, the rectified linear unit (ReLU), which is simply given by u 7→
max(0, u) (see Fig. 5.3), is becoming more popular due to its simplicity, its simi-

larity to models of biological neurons[251], and its tendency to greatly speed up

training[252]. Note that even though the ReLU activation function is unbounded

and thus does not satisfy the hypotheses of the universal approximation theorem,

it is clear that the result still holds since by subtracting one ReLU from another

with the same scaling but different translation we obtain a bounded step-like

function.
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Figure 5.3: Comparison of common activation functions.

Various alternatives to ReLU have been suggested, and one that will be par-

ticularly important for our purposes is the Gaussian error linear unit (GELU),

given by u 7→ uP(U ≤ u), where U is a random variable drawn from a standard

normal distribution[253] (see Fig. 5.3).

We discuss our choice of activation function in Section 5.2.2.

Network topology

With the universal approximation theorem in mind, one may wonder whether

there is any point using more than a single hidden layer, since each additional

layer adds complexity to the training of the model[254]. The answer is that

while single-hidden-layer networks can indeed approximate arbitrary functions,

they may do so inefficiently in terms of the number of neurons (and therefore

weights) required for that approximation[255–259]. Moreover, there is growing

empirical[260–262] and theoretical[263–265] evidence to suggest that “deep” ar-

chitectures (with several hidden layers) more naturally learn to generalise, which

is to say they can perform well at regions of the domain with sparse training data

by “reusing knowledge” learned from well-sampled regions.

For the sake of building intuition it will be instructive to see why the uni-

versal approximation theorem holds in the specific case of a network with one-

dimensional inputs and outputs, and using the most traditional activation func-
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Figure 5.4: Approximation of a truncated sinusoid using a linear combination of
four logistic functions.

tion, namely the logistic function:

α(u) =
1

1 + e−u
. (5.15)

A multilayer perceptron mapping R → R with a single hidden logistic layer is

simply a linear combination of scaled, translated logistic functions. It is clear

from the shape of the logistic function that by scaling we can approximate a step

function arbitrarily well, and by taking a linear combination of two step functions

we get a top hat function. With a linear combination of top hat functions we can

then approximate a compactly supported real-valued function. See Fig. 5.4 for a

simple example, where we have approximated a truncated sinusoid using a linear

combination of four logistic functions.

This argument demonstrates the high expressiveness of networks using non-

linear activation functions, but also hints at a problem with shallow networks:

they have no capacity to “share” learned features between different areas of the

input space. With deep networks, on the other hand, the first layer can map out

the general positions of features and then later layers can sculpt these features

more finely, the key point being that these later layers can act on multiple parts of

the input space simultaneously. This is the reason that deep networks can require

fewer neurons when approximating more complex functions, and could also be
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Figure 5.5: Comparison of shallow and deep neural network models for a land-
scape with several features. Note that for the orange and green curves, x rep-
resents the network input and y the network output. For the blue points, (x, y)
pairs correspond to the training data sampled from the landscape. The plot thus
shows points sampled from the landscape together with two approximate models
of the landscape. We use this approach for visualising approximated landscapes
throughout the remainder of this section.

responsible for the (apparent) superior generalisation ability of deep networks.

To demonstrate this feature sharing behaviour, in Fig. 5.5 we present a com-

parison of the fits found by shallow and deep networks for a landscape with several

features. The shallow network has a single hidden layer of 128 neurons, while the

deep network has a hidden layer of 32 neurons followed by a hidden layer of 4

neurons (a schematic of the deep network is shown in Fig. 5.6). Both networks use

ReLU activation functions. We can see that despite having significantly fewer

neurons, the deep network is able to learn a more accurate model. To explain

this, we can inspect the inputs to the second hidden layer of the deep network, as

shown in Fig. 5.7. Recall that these inputs will be passed to the rectified linear

activation function (that is, their negative values will be truncated to zero) before

being linearly combined to obtain the output of the network. We see that two

neurons in the layer attain only negative values and so are essentially wasted,

while the other two neurons create a sawtooth-like curve. The fact that this saw-
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Note that some arrows have been shortened to avoid clutter.

tooth drops below 0 means that the bottoms will be truncated by the activation

functions in the second hidden layer. Thus we see that the deep network can

share this “truncation feature” across the entire input space, which allows it to

model the function accurately despite having relatively few neurons.

5.2.2 Algorithm details

With the basic ideas and techniques of multilayer perceptrons in hand we can

now present the details of the machine learning algorithm (the code is available

on GitHub[266]). To formalise the setting, we consider the experiment to be

represented as a cost landscape, which is a function C : S ⊂ Rk → R mapping a

finite number of controllable parameters to a cost representing the performance

of that set of parameters. In practice the cost landscape is a stochastic function

(which may even vary over time), but for simplicity we approximate it as a

stationary, deterministic function. We consider C to be a black box—the only

way to determine information about C is to evaluate it.

With this formulation, the problem of optimising the physical system is re-

duced to a problem of function optimisation: determining arg minx C(x), the

configuration of parameters minimizing C.
As described in Section 5.1, we approach this problem by learning a model

for the system (that is, an approximation of C) and then optimising that model.

Moreover, we extend that basic idea by making the algorithm automatically ex-

plore the domain of C in order to improve the model and therefore the quality of
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Figure 5.7: Inputs to the four individual neurons of the second hidden layer in
the deep network of Figs. 5.5 and 5.6, as functions of the network input x. The
curves will be truncated at 0 (dashed line) when they are passed through the
ReLU activation function of the neurons.

the optimisation. The algorithm proceeds as follows:

1. Run the experiment some number of times with arbitrarily-chosen param-

eter sets and obtain the corresponding costs. These parameters and costs

form the initial training data.

2. Fit a multilayer perceptron P to the training data.

3. Using P , find a new candidate parameter set x.

4. Run the experiment using x, obtain the cost C(x), and append (x, C(x)) to

the training data.

5. Repeat from 2 (using the larger set of training data).

6. After every three repetitions of steps 2 to 4, run the experiment once with

an arbitrarily-chosen parameter set, and append the parameter set and cost

to the training data.

To obtain the initial training data in step 1 we follow the approach of Wigley

et al.[235], and run the experiment 2n times using a differential evolution[267]
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algorithm. The same differential evolution algorithm is thereafter used every

four runs (step 6), which adds some additional variety and exploration to the

algorithm, and also enables some degree of comparison between the performances

of the differential evolution and machine learning-based algorithms.

The most interesting steps of the algorithm for our purposes are 2 and 3.

These steps need to be able to run quickly (otherwise we waste time that would

be better spent running the experiment), but also need to model, explore and

optimise the landscape effectively. This is in contrast to standard applications of

multilayer perceptrons, where the focus is on function approximation alone.

Before giving the details of these steps, we note that the algorithm has many

hyperparameters that determine its speed and general behaviour. For concrete-

ness we chose initial values for hyperparameters under the assumptions that each

experimental run would take on the order of one second and that the dimensional-

ity of the landscape would be no more than around 100. We found that sometimes

hyperparameters needed to be tuned simply by experimentation, and for this we

used simulated random quadratic landscapes with dimensionalities ranging from

1 to 10. Ideally, hyperparameters chosen this way should work well in real ex-

periments, since needing to fine-tune hyperparameters on a per-experiment basis

partially defeats the purpose of using automatic optimisation in the first place.

As we will see in Section 5.3, our approach worked: the hyperparameters chosen

with this method performed well on a real experiment with significantly more

parameters, and with no additional tuning.

Step 2: fitting the multilayer perceptron

The first step in fitting a multilayer perceptron is to choose the network topology

and activation function.

When the domain of C is large and evaluations are expensive, we cannot

explore all parts of the domain in detail, and therefore require our chosen model to

exhibit a good generalisation ability. As discussed in Section 5.2.1, this suggests

we should use a relatively deep network. We performed simple benchmarking

using a simulated experiment to investigate empirically the effect of network

depth on the algorithm’s end-to-end performance, the results of which are shown

in Fig. 5.8. This suggests that, indeed, deeper networks tend to perform better.

However, deeper networks also require more time to train, so there is a tradeoff

to be made. We therefore chose a 5-layer network with 64 neurons each, since
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Figure 5.8: Comparison of algorithm performance for different network depths.
All networks had 64 neurons per layer. Each point represents the mean (and
standard deviation of the mean) estimated from a sample of 200 runs. In each
individual run, the algorithm performed 100 iterations on a randomly-generated
10-dimensional quadratic landscape.

this can be trained in under one second on standard hardware but exhibited

comparable performance to deeper networks on the simulated experiment.

The next choice is the activation function. We found that, as suggested by the

literature, rectified linear units (ReLU) lead to significantly faster training times

than sigmoids. However, we noticed that the landscapes modelled by ReLU

networks occasionally exhibited large flat areas or sharp corners, which could

hamper the algorithm’s natural tendency to explore (see Fig. 5.9). To overcome

this problem we used the Gaussian error linear unit (GELU) instead. Its linearity

in the positive domain enables fast training, like ReLU, but the curvature near

the origin tends to create smoother landscapes that are more easily explored and

optimised (see Fig. 5.9). Moreover, by using GELU we also benefited from its

minor regularisation effect[253].

As mentioned in Section 5.2.1, networks that are trained for too long can over-

fit the training data. The setting of our algorithm partially avoids this problem

automatically, since the training data change with every iteration. To further

reduce the effect, we implemented an aggressive form of early stopping where

we terminate training as soon as the relative improvement in loss drops below
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Figure 5.9: Comparison of neural network models using ReLU (left) and GELU
(right) activation functions. The tendency of ReLU to create sharp corners at
data points can cause the algorithm to get stuck on the edges of wells in the
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explore the interiors of wells.

20%. This approach additionally improves the algorithm’s natural tendency to

explore, since at each step the fit of the model is slightly different due to not

having completely converged.

Step 3: choosing candidate parameters

Once we have the approximation P of the experimental cost landscape C, we

must use it to choose a new set of parameters.

Unlike in the typical supervised learning scenario in which a fixed set of train-

ing data is provided, here the algorithm must explore the landscape by itself,

so it is suboptimal simply to return the predicted best parameters every time

(since if this prediction is initially wrong then the algorithm will not be able to

improve its model and potentially find even better parameters). This touches on

a central problem in reinforcement learning—a subfield of machine learning in

which an “agent” interacts with an unknown environment in order to generate

“reward”—known as the “exploration versus exploitation” dilemma. The agent

must decide whether to explore new areas of the landscape that might provide



128 CHAPTER 5. AUTOMATED OPTIMISATION

higher reward, or exploit the best-known areas of the landscape to earn reward

with high confidence. In the reinforcement learning community there are many

popular approaches to resolving the exploration versus exploitation dilemma[268–

270], but these tend to focus on cases where the action space (the set of choices

the agent can make) is small[268]. This is certainly not true in our situation, since

at any point in time the algorithm can choose to explore any point in the param-

eter space. For this reason we have chosen to use the theoretically well-grounded

Thompson sampling [271], which naturally works with large action spaces.

In Thompson sampling, we have a family of potential landscapes P θ param-

eterised by some θ, and a posterior P(θ|D) giving the likelihood of the true

landscape being P θ given the training data D. Each time we want to perform

an action (that is, choose a parameter set) we sample θ from P(θ|D) and choose

the action suggested by P θ. The idea is that all landscapes in the distribution

will tend to agree on areas of the domain that have already been explored, but

may exhibit very different predictions on under-sampled regions. In particular,

some landscapes will predict good performance in the unknown regions, so when

they are chosen they will suggest parameters from those regions and thus trigger

exploration. Over time, all high-performing regions of the domain will become

well-explored, so the global optimum can be identified.

To use Thompson sampling in our algorithm, we therefore need to keep track of

an entire distribution of models of the landscape. Once we have this distribution,

to choose the next parameter set we sample a model from the distribution and

then find the minimum predicted by that model. We considered three options to

track a distribution of models:

Dropout

Dropout was introduced[245, 272] as a method to help prevent over-fitting

in large neural networks. In dropout, neurons are randomly dropped from

the network during training (that is, their activations are set to 0). The

idea is that this process prevents co-adaptation between different neurons,

and thus makes the model less likely to fit noise in the data.

Traditionally, when actually evaluating the network on new inputs, all neu-

rons are kept, and the resulting output is approximately the average over

all possible “thinned” networks. However, this averaging is not necessary,

and instead the neurons can be randomly dropped out during evaluation
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too. This yields a distribution of models, since for each choice of neurons

to drop out the network describes a different function[273].

Bayes by backpropagation

In Bayes by backpropagation[274], each network weight is normally dis-

tributed rather than deterministic. That is, corresponding to each weight

there are two parameters, describing the mean and standard deviation of

its distribution. An additional term is included in the training objective to

discourage setting standard deviations to zero.

For each each training step, the weights are independently sampled from

their distributions. With these fixed weights the gradient descent update is

performed as usual, taking into account the dependence of the weights on

the underlying means and standard deviations. A distribution of networks

is obtained by sampling the weights prior to passing parameters through

the network.

Bagging

The final method we consider, and the simplest, is bagging[275]. In this

approach an ensemble of networks is created, and each network initialised

independently. These networks represent the elements of the (discrete)

distribution of models.

Traditionally each network is trained on its own set of data (drawn randomly

with replacement from the full set of training data), but since in our case we

work with relatively few data points we train each network on the full set,

and rely on independent initialisations to achieve a wide variety of models.

We compare the behaviours of these three methods in Fig. 5.10, where training

points have been sampled from a landscape with two wells. As we can see,

the more sophisticated methods of dropout and Bayes by backpropagation are

actually not particularly useful for our purposes, since most landscapes in their

distributions tend to have roughly the same shape and will therefore all tend

to predict minima in the same places. For example, in the case of dropout it

appears that most if not all of the sampled models predict the minimum to occur

in the left-hand well. With Bayes by backpropagation it appears that all models

predict a very similar depth in both wells, so it is possible that the right-hand

well would be identified as a potential minimum and thus explored. However,
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the very strong similarities between all the models is still concerning from an

exploration perspective, since it is clear that the distribution does not reflect the

“true” distribution of all models fitting the data, and thus may not be useful for

effectively exploring a more complex landscape. With bagging, on the other hand,

not only is the fit of the training data better, but a wide variety of behaviours in

the right-hand well are predicted. It is this variety that is necessary for effective

exploration via Thompson sampling.

In addition to their apparently inferior exploration characteristics, dropout

and Bayes by backpropagation complicate training significantly: the total train-

ing time is increased, and due to the additional randomness in the procedure it

becomes harder to detect when the training has converged.

For these reasons we chose to use bagging. We found that using only three

independent networks was sufficient to obtain a good level of exploration on the

simulated 10-dimensional quadratic cost landscape.

The final ingredient in determining candidate parameter sets, given the dis-

tribution of networks, is locating the minimum of the sampled model. We used

SciPy’s implementation of the L-BFGS-B algorithm[276, 277], starting from n

randomly chosen points of the domain.

Recalling that every fourth parameter set was chosen by a differential evolu-

tion algorithm, we note that the concrete implementation of Thompson sampling

using bagging reduces to the following: run the experiment three times using

the best parameter sets predicted by the three networks (where the networks

are trained prior to each prediction), then run the experiment once more using

the parameter set suggested by the differential evolution algorithm, then run the

experiment three more times using the (new) best parameters predicted by the

three networks, and so on.

5.3 Optimising a magneto-optical trap with ma-

chine learning

In this section we demonstrate the potential of the algorithm by using it to auto-

matically optimise a magneto-optical trap. We start with a general introduction

to magneto-optical traps in the context of quantum memories, and a description

of the particular system that we have optimised. We then present and analyse
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the preliminary results from applying the algorithm to that system.

5.3.1 Background: quantum memories and magneto-optical

traps

As discussed briefly in Chapter 1, quantum memories are expected to find many

applications in quantum information processing devices of the future. Gener-

ally speaking, quantum memories provide a mechanism for synchronising non-

deterministic events[278]. If the outputs of multiple non-deterministic processes

are required simultaneously, we may direct those outputs into a quantum memory

and wait until there is a high probability that all processes have completed. If we

then read out from the memory, the chances of obtaining all necessary outputs

simultaneously is greatly improved.

In linear optical quantum computation, for example, it has been proposed that

probabilistic gates may be prepared offline (that is, outside the path of the main

computation) and teleported back into the computation when appropriate[279–

281]. This removes non-determinism from the main circuit, but introduces it

into the offline resource preparation. If a quantum memory is available then the

resources may be prepared ahead of time and stored until they are needed, thus

making the entire process more deterministic.

Another important example of a device relying fundamentally upon quantum

memories is the quantum repeater, which has been proposed as a solution to the

problem of slow bit rates resulting from fibre optic losses in quantum key dis-

tribution networks[29, 30]. In a network utilising quantum repeaters, nodes are

placed at regular intervals along a communication line. Entanglement is swapped

between pairs of adjacent nodes in a hierarchical manner, until eventually en-

tanglement is shared between both ends of the line[31]. This entanglement may

then be used as a resource for quantum key distribution[282]. Importantly, the

resource and time requirements of a communication protocol based on quantum

repeaters scale at most polynomially with distance, unlike direct fibre transmis-

sion which is inherently attenuated exponentially[29]. However, the scheme is not

without challenges. In order for a central node to swap entangled states shared

by that central node and two adjacent nodes, it must have simultaneous access

to a member from each entangled pair. Since the entanglement generation is

non-deterministic, simultaneous arrival cannot be guaranteed unless a quantum
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memory is used to provide synchronisation.

While many schemes for optical quantum memories have been proposed and

demonstrated (see, for example, the reviews by Hammerer et al.[283] or Heshami

et al.[284]), the one that we are most interested in is the gradient echo memory

(GEM)[285, 286]. In this scheme an ensemble of 2- or 3-level atoms is inhomo-

geneously broadened by the application of an electric or magnetic field gradient,

such that the frequency of the appropriate transition varies monotonically along

the optical path through the ensemble. An optical pulse incident on the ensem-

ble is absorbed along its length, with Fourier components of the pulse mapped

longitudinally onto the ensemble. The atomic excitation dephases as a result of

the broadening, and after a period of time the sign of the gradient is switched,

causing a reversal of the dephasing. After an equal period of time, when the

phases realign, the pulse is re-emitted as a photon echo.

The GEM scheme was first implemented in a solid state system consisting of

praseodymium-doped yttrium orthosilicate[285], soon followed by a demonstra-

tion in warm rubidium vapour[286]. Both of these systems have more recently

been used to realise highly efficient memories (87% in warm vapour[287] and 69%

in solid state[288]), but with storage times of only a few microseconds. For the

solid state system the storage time is limited by the short coherence time of the

electronic transition, while for the vapour the primary limiting factor is atomic

diffusion. In the latter case, the effect of diffusion can be mitigated by switching

from a warm vapour, in which atoms are fast-moving, to a dense cloud of cold

atoms, which exhibits significantly lower atomic speeds[289]. Indeed, a GEM

system based on cold rubidium atoms has recently been reported operating at

50% efficiency with a storage time of 0.6 ms[36], which is significantly longer than

the storage time at 50% efficiency in warm vapour (10 µs[287]). A key challenge

in further improving performance of this system is attaining a strong light-atom

coupling, which translates to requiring that the cold atomic cloud exhibit an ex-

tremely high optical depth (OD)[285, 290–292]. The component at the core of

this requirement is the magneto-optical trap (MOT), which is used to collect, cool

and compress a cloud of atoms.

Since its introduction in 1987[293], the MOT has become an indispensable

tool in cold atom experiments[294]. Perhaps most famously, production of Bose-

Einstein condensates typically proceeds by first loading and compressing atoms

with a MOT and then performing evaporative cooling to reduce the tempera-
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tures drastically[295–297]. Other examples include quantum information process-

ing based on neutral atoms[298–300], isotope trace analysis[301], high-resolution

spectroscopy[302, 303] and cold-atom interferometry[304–306], to name just a

few.

Despite its widespread and impressive successes, the MOT has evaded de-

tailed theoretical understanding throughout its history, and as a consequence has

often been a source of experimental surprises. For example, soon after the optical

molasses—the precursor to the MOT—was first reported[307], it was noted that

the minimum achievable temperatures were significantly better (by a factor of

6) than the limit predicted by the theory[308, 309]. This was later understood

to be due to an unexpected cooling mechanism known as polarisation gradient

cooling [310]. Similarly, it was found that confinement times in optical molasses

could be improved by a factor of 50 by misaligning the nominally counterprop-

agating beams[311, 312]. This effect has since been attributed to a dynamical

stabilisation of the atomic trajectories through the molasses[313].

More generally, the analytic intractability of the MOT has meant that meth-

ods to improve performance have largely been discovered via empirical means[314–

316]. In addition to the aforementioned polarisation gradient cooling, notable ex-

amples are dark spots, where a region of the cloud is made transparent to the

trapping field to eliminate the repulsive effects of reabsorption[317, 318], and the

use of a compression phase in which the density of the cloud is transiently in-

creased at the expense of atom number by gradually ramping the laser detunings

and magnetic field gradient[319–321]. While these “tricks” are now widely used

and continue to yield impressive results, the lack of a comprehensive theoreti-

cal model of the MOT—especially outside the adiabatic regime of constant or

slowly-varying fields—means there is no reason to believe that these techniques

are optimal[322–325].

The compression phase of a MOT, in which multiple parameters that may

vary with time must be controlled simultaneously, is thus a prime candidate for

optimisation via machine learning: there is little theoretical understanding of

the dynamics, so the algorithm is not particularly disadvantaged compared to

a human physicist; there is a huge parameter space to explore, given that for

each field there are multiple parameters describing its time dependence; and the

timescales of the experiment are inherently short, so iterations may be performed

relatively rapidly.
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Figure 5.11: Schematic of the magneto-optical trap (MOT), showing the trapping
and repump lasers (orange), 87Rb atom cloud (purple) and magnetic field coils
(blue). The trapping and repump lasers are combined on a polarising beamsplitter
(not shown), and the copropagating fields are then split and directed into the
MOT. The horizontal beams are incident at 45° in order to allow access along the
long axis of the cloud for the GEM beams (not shown). The cloud is confined in
a glass cell inside the coils, and is attached to a vacuum chamber (not shown).

5.3.2 A magneto-optical trap for a cold-atom gradient

echo memory

In this section we introduce the specific MOT—the core component of a cold-

atom gradient echo memory—that we have optimised. The system is the same as

that used by Sparkes et al.[289, 292] and Cho et al.[36], and the basic schematic

is shown in Fig. 5.11. The 87Rb atoms are confined in a glass cell, and trapped

in a cylindrical geometry (a “two-dimensional” MOT) in order to maximise OD

along the optical path used by the memory. This is achieved by using elongated

coils in a quadrupole configuration[326]. In addition, the horizontal trapping and

repump beams are injected at 45°, which allows access along the long axis of the

MOT for the memory beams[326].

Loading of the MOT with atoms proceeds as follows. There is first a ∼400 ms

loading phase, in which atoms are collected into the trap from the surrounding

gas. In this phase the repump is on resonance with the D2 F = 1 → F ′ = 2

transition, the trapping is 30.8 MHz red-detuned from the D2 F = 2 → F ′ = 3

transition, and the magnetic field gradient is 6 G cm−1.
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After the loading phase there is a compression phase in order to transiently

increase the OD[317, 319]. Over a period of 20 ms the magnetic field gradient

is ramped up to 28 G cm−1, and the repump is red-detuned by 30 MHz. This is

followed by 1 ms of polarisation gradient cooling, in which the magnetic fields are

switched off and the trapping laser is red-detuned to 70 MHz.

The exact values for the compression ramps described above were determined

via manual tuning, but the general motivation is as follows. Increasing the mag-

netic field gradient increases the spring constant at the center of the trap and

thus compresses the atoms more tightly, at the expense of collecting fewer atoms

from the surrounding gas (since the Zeeman shift for atoms far from the center of

the trap becomes so large that trapping photons are not absorbed). This tradeoff

is acceptable since we are looking to achieve a high density and are no longer

interested in collecting more atoms. Simultaneously detuning the repump means

that, as the MOT becomes denser due to the increasing magnetic field gradi-

ent, fewer atoms are visible to the trapping light and thus the repulsive effect of

reabsorption is minimised (this is known as a temporal dark spot [317]).

While this manually-optimised sequence has been successful for the system

in the past[36, 289], there is no reason to believe that it cannot be improved

significantly with further tuning.

Parameterisation and cost function

In order to apply the machine learning algorithm it was necessary to define a

parameterisation of the compression phase, describing the control given to the

algorithm, and a cost function, quantifying the performance of a given parameter

set. We chose to allow the trapping frequency, repump frequency and magnetic

field gradient to be varied, since there is evidence to suggest that all three of these

quantities can have a large effect on the performance of the MOT[317, 319]. To

give these quantities time dependence we divided the 20 ms compression followed

by the 1 ms of polarisation gradient cooling into 21 timesteps of 1 ms each, and

used an independent parameter for each timestep and each of the three quantities

(trapping and repump frequencies, and magnetic field gradient). This yielded

63 independent parameters describing three piecewise-constant functions of time.

We limited all trapping detunings between −70 MHz and 12 MHz (that is, 70 MHz

red-detuned to 12 MHz blue-detuned), all repump detunings between −30 MHz

and 1.3 MHz, and magnetic field gradients between 0 G cm−1 and 28 G cm−1.
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Our goal was to achieve a high OD, so we determined the cost function as

follows. Immediately after the 21 ms phase controlled by the algorithm, the atoms

were pumped into the F = 2 state for 1 ms. Then the transmission of a probe

field, off-resonant from the D1 F = 2 → F ′ = 1 transition, was measured. The

cost function was defined to be the result of that measurement.

Also note that, as mentioned in Section 5.2.2, no additional tuning of the

algorithm was performed based on this experiment-specific parameterisation and

cost function.

5.3.3 Results

We performed five optimisation runs of the compression phase across several days

using the machine learning algorithm, with each run involving between roughly

200 and 700 iterations (runs of the experiment with different parameter sets).

The longest complete optimisation run took approximately 2.5 hours.

An OD of 448 was obtained using the learned compression ramps, compared to

138 for the original manually-optimised ramps. The learned compression ramps

are shown in Fig. 5.12, with the original ramps shown for comparison.

Imaging of the MOT during the compression phase, using the learned ramps,

is shown in Fig. 5.13. We observe the pulsed nature of the compression, consistent

with what we might expect from inspecting the ramps.

5.3.4 Discussion

The algorithm was evidently able to produce a significant enhancement in perfor-

mance by employing ramps that are radically different to those determined via

manual optimisation. In this section we present a preliminary discussion of these

results and some of their implications.

We shall make frequent reference to the five different optimisation runs we

performed. We denote by Ri the run with i iterations and by pi the best param-

eters found in that run, where i ∈ {702, 583, 502, 302, 272} is referred to as the

length of the run.
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Figure 5.12: Best ramps found by a run of the machine learning algorithm com-
pared to the best manually-tuned ramps.
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0 ms 3 ms

7 ms 11 ms

15 ms 19 ms

Figure 5.13: Absorption images of the MOT at various stages during compression.
Note the pulsing behaviour: the cloud contracts for the first 7 ms, then expands
slightly over the next 8 ms, and finally is compressed tightly.
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Comparison of ramps

Since the learned ramps are extremely different to the original ramps, and in-

deed are quite unintuitive, it is important to understand which features of the

ramps contribute to the superior performance, and which are merely artefacts

of the learning process. It is not surprising that such artefacts exist: there is

no incentive for the algorithm to learn ramps that are “simple” or “smooth”

unless they correspond to better costs, and it seems likely that there are some

parameters—or, indeed, combinations of parameters—that can be varied widely

without significantly affecting cost.

One simple approach we can take to help distinguish between important fea-

tures and irrelevant artefacts is to compare the high-performing ramps found

by the algorithm across different optimisation runs on different days, as shown

in Figs. 5.14 and 5.15 (we have split the runs across two plots to avoid excess

clutter).

Inspection of these plots shows that there exist some common trends. In all

cases the trapping frequency is ramped down (corresponding to becoming further

red-detuned) towards the end of the phase. There has been some prior evidence

to suggest that this type of ramp can be advantageous, since by further detuning

the trapping light there is less absorption and thus less repulsive force due to

reabsorption[319, 327]. The manually-tuned runs did not adjust the trapping

frequency until the polarisation gradient cooling phase, when the magnetic fields

were switched off, so it could be interesting to investigate experimentally whether

increasing the trapping detuning a few milliseconds earlier has a positive effect

on performance.

Similarly, all runs exhibit a clear reduction in repump frequency (correspond-

ing to becoming further red-detuned) towards the end of the phase, which is

consistent with conventional wisdom regarding the creation of a temporal dark

spot. Interestingly, however, it would appear that the ramp used in the origi-

nal manually-tuned scheme is unnecessarily slow, and good performance can be

attained with a more abrupt reduction.

For magnetic field gradient the correlations are less clear, although in all cases

there is a sustained period of maximum gradient towards the end of the phase,

which is again consistent with the standard approach to MOT compression.

While these trends towards the end of the phase are quite clear, the first half
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Figure 5.14: Comparison of best parameter sets found during the longest three
optimisation runs. Each colour corresponds to a single parameter set. In order to
simplify visualisation we have re-scaled each parameter to [0, 1] (according to its
bounds), and plotted parameters as points corresponding to their indices within
the compression phase, rather than plotting piecewise-constant functions of time.
Moreover, even though the quantities are distinct we have joined points from the
same parameter set with lines, since this allows whole parameter sets to be more
easily visualised. We will use this technique throughout the remainder of the
chapter.
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Figure 5.15: Comparison of best parameter sets found during the shortest two
optimisation runs. As in Fig. 5.14, each colour corresponds to a single param-
eter set, and parameters have been scaled to [0, 1] and plotted as lines to aid
visualisation.
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is more difficult to analyse, since there are no clear common features shared by

all runs. This does not necessarily imply that these parameters are insignificant;

instead it simply means that good performance can be attained for many different

choices of these parameters. Further experimentation is required to determine

exactly which features of the ramps contribute to the high performance.

Another implication of the diversity in the learned ramps from run to run

is that the parameters found by the algorithm depend sensitively on inherent

randomness in the optimisation procedure, since otherwise we would expect the

same parameters to be found every time.

Algorithm convergence

We have seen that there is significant variability in the ramps found by the algo-

rithm between different optimisation runs. To understand the reasons for this we

may investigate in more detail the convergence behaviour of the algorithm within

each run. For example, it is possible a priori that the runs were merely stopped

prematurely, and all would have converged to the same global minimum given

sufficient time. Alternatively, each run could have been converging to a different

local minimum of the cost landscape depending on the initial training data. The

evidence we shall present suggests the latter.

To start investigating any convergence (or lack thereof) we may look at the

sampled costs from each run over time, as the algorithm explored and refined

its estimates. These are shown for the longest run in Fig. 5.16. We observe

that during the first ∼120 runs, where the parameters were being chosen by

the differential evolution algorithm, a variety of costs were achieved as different

parts of the space were explored. When the neural network-based algorithm was

switched on, it rapidly made use of these initial training data to identify promising

areas of the domain. Indeed, in this particular run the neural network algorithm

took only 15 iterations before identifying a superior parameter set. Moreover,

it was able to continue to improve on this choice over the next several hundred

iterations, and in the process achieved far better costs than those found by the

differential evolution algorithm. We also note that even after 700 iterations the

algorithm was still exploring the search space (as evidenced by the variety of costs

on the right-hand side of the plot), although the best obtained costs appear to

be converging.

In Fig. 5.17 we plot the analogous quantities for several more optimisation
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Figure 5.16: Cost as a function of iteration for the longest optimisation run.
We have distinguished between parameters chosen by the differential evolution
algorithm (initial training data, and subsequently every fourth iteration) and the
neural networks.

runs of varying lengths, and observe similar trends. Note that the costs cannot

be compared from run to run, since they depend on transient aspects of the

experimental setup such as the number of atoms in the cell and the detuning of the

probe field. We observe that in some instances the performance of the algorithm

actually decreased as time went on. The fact that this trend also appears to affect

the performance of the differential evolution indicates that it was due to a low-

frequency drift in the cost measurement, rather than the algorithm “forgetting”

the best parameters.

Another interesting trend evident in Figs. 5.16 and 5.17 is that as time went

on the variability in the costs of parameters suggested by the neural networks

increased, suggesting that the algorithm explored more and more aggressively.

A possible explanation for this is that over time the landscape modelled by the

neural networks would most likely have become more complex, and thus exhib-

ited more local minima. The minimisation procedure used to select candidate

parameters would then be more likely to become stuck in a local minimum away

from the well-explored region. This hypothesis could be tested by taking snap-

shots of the modelled landscape at various points during the optimisation run,

and investigating the complexity of the landscape at each such point.
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Figure 5.17: Cost as a function of iteration for several optimisation runs.
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Figure 5.18: Actual and predicted costs for all parameters selected by the neural
networks during the longest run.

An alternative explanation is based on the idea that the machine learning

algorithm may have been generally “optimistic”; that is, it may have tended to

predict unrealistically good costs for unknown parameters. After the initial train-

ing data were provided, the neural networks most likely identified an “obvious”

region of good parameters (as evidenced by the rapid initial convergence to a low

cost). While the neural networks explored this region, the differential evolution

would have continued to explore the broader space, and may have found other

similarly promising regions. If the neural networks were optimistic, after discov-

ering that the parameters in the “obvious” region were not as good as expected,

they would have incentive to explore the other regions (for which they still har-

boured unrealistic expectations). In Fig. 5.18 we plot the actual cost against the

predicted cost for each set of parameters chosen by the neural networks, and we

see that, indeed, they tended to predict unrealistically good costs. While this ob-

servation lends the hypothesis some evidence, more analysis and experimentation

are required to confirm or refute it.

It is clear that the algorithm was still exploring near the end of each run, and

that the costs it was able to obtain were converging. However, this does not give

any information about convergence of the actual parameters. To investigate this

aspect we may calculate the distances in parameter space between a certain fixed

parameter set and each parameter set chosen during a run. Convergence of these
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distances suggests convergence of the corresponding parameters. We use the best

ramps found during the two longest runs (p702, p583) as fixed points, and calculate

distances to each of these points for the two longest runs, as shown in Fig. 5.19

(note that we calculate distances after scaling each parameter to [0, 1] based on

its bounds).

The top-left and bottom-right plots demonstrate that, in each run, the pa-

rameters converge roughly towards the best parameters found in that run. The

existence of some degree of convergence to the best parameters is unsurprising.

The more interesting observation is that there is no additional subsequence con-

verging to some other parameter set, which suggests that the algorithm has iden-

tified a single promising area early in the run, and—aside from some scattered

exploratory samplings—has focused only on refining that guess. This observation

indicates that while the algorithm was capable of effectively optimising the exper-

iment, it is unlikely that in a single run it could find the true global minimum of

the landscape. This is not particularly surprising, given the potential complexity

of a 63-dimensional landscape, nor necessarily problematic, but still an important

observation.

The top-right and bottom-left plots reinforce this picture by showing that the

parameters in one run remain relatively distant from the best parameters found in

a different run. This implies that the algorithm could not have gathered sufficient

information to conclude that the region it chose to focus on was better than the

region found by the other optimisation run; instead it appears that the algorithm

was most likely ignorant of the alternative region altogether.

We can gain further insight into the localised convergence behaviour within

a run by inspecting several of the best parameter sets from that run. These are

shown for the longest run in Fig. 5.20, together with the single best parameter set

from the second longest run (p583) for comparison. While there is evidently some

degree of variety, it is clear that most of the good parameter sets identified during

the run had similar shapes and features, even though we know (from Figs. 5.14

and 5.15) that there exist highly effective ramps with very different shapes.

We have presented evidence suggesting that the general behaviour of the algo-

rithm, within an optimisation run, was to quickly identify a promising area of the

parameter space in which to search, and over time converge towards a minimum

in that area. While some amount of wider exploration continued to occur until

the end of each run, this was insufficient to detect the existence of other areas of
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by the neural networks, for fixed points p702 and p583 and runs R702 and R583.
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Figure 5.20: The best 300 parameters found during the longest optimisation run,
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comparison. Each line represents a single parameter set. With the exception of
the green line representing p583, each line is coloured according to the cost of the
corresponding parameter set.
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the space containing good solutions.

Local landscape behaviour

We have shown that each run of the algorithm tends towards an optimal solution

within a particular localised area of the parameter space, and that this solu-

tion was (unsurprisingly) close to the best parameters found for that run. An

advantage of this type of convergence is that the model should be an accurate

representation of the true landscape in the vicinity of those best parameters, by

virtue of having sampled so many points. We can thus inspect the model in order

to learn about the behaviour of the landscape in that area. In this section we

focus on the longest run (R702), and in particular the local behaviour about the

best parameters (p702).

While neural networks are notoriously opaque to the extraction of useful infor-

mation[328–330], in our case we may exploit the fact that—despite any internal

complexity—the networks we consider merely represent explicit real-valued func-

tions of real variables. In particular, we may calculate the derivatives of the

relevant neural network about the best parameters, and thus obtain Taylor ap-

proximations of the landscape.2

For example, it is useful to know whether better costs could have been attained

had the bounds on the parameters been larger, since this could inform the choice

of bounds used in future runs of the algorithm. Inspecting the best parameters

(Fig. 5.12) suggests that this could indeed be the case, since many parameters

were chosen to saturate their bounds.

Another way to attempt to answer this question is by calculating the gradi-

ent of the model: a highly non-zero partial derivative (with an appropriate sign)

for a parameter that saturated its bounds would imply that, indeed, the bounds

were overly restrictive. The gradient vectors for the three neural network models

trained during the longest run are shown in Fig. 5.21 (note that all parameters

were scaled to [0, 1] based on their bounds prior to calculation of the gradient, so

that gradients with respect to different physical quantities can be roughly com-

pared). We notice that the second model exhibits significantly higher partial

derivatives than the other two, meaning it predicted the landscape to be less

2Actual computation of derivatives proceeds via multiple applications of the chain rule;
many machine learning libraries have built-in functionality to compute arbitrary mixed partial
derivatives (of multilayer perceptrons) automatically[331, 332].
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Figure 5.21: Gradients of each neural network at the best parameters, for the
longest run. Each point gives the component of the gradient vector corresponding
to a single parameter (the partial derivative with respect to that parameter),
where the parameters are arranged in the usual manner. The units correspond
to raw costs as shown in Fig. 5.16 and parameters scaled to [0, 1] as usual. We
have once again plotted lines to help distinguish between the different data sets,
even though the quantities are discrete.
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flat (in the vicinity of the best parameters). However, the fact that the model

was not actually able to find a better-performing set of parameters suggests that

this may simply be a result of inaccurate modelling, since over time the accu-

racy of each individual model fluctuates (due to the randomness in the training

procedure). In any case, there do not appear to be strong correlations between

saturated parameters in Fig. 5.12 and highly non-zero gradients in Fig. 5.21.

The only potential candidates from a trustworthy network (namely 1 or 3) are

some of the late trapping detunings and early magnetic field gradients, although

in both cases the gradients are still relatively small. Thus it appears that the

bounds on the parameters did not significantly hamper the algorithm’s ability to

optimise the chosen solution, although for a future run it could be interesting to

increase the allowable magnetic field gradients and trapping detunings to see if

any improvement in performance becomes possible.

Another aspect of the local landscape behaviour that we can investigate is

the sensitivity of the cost function to perturbations of the parameters, which in

turn could yield information about which features of the parameter set are most

important. Once again we use a Taylor approximation of the model, but this time

we consider only the second-order term, namely the Hessian matrix (the matrix

of mixed second-order partial derivatives). This describes a paraboloid approx-

imation of the landscape in the vicinity of the best parameters. The principal

directions of this paraboloid, which are given by the eigenvectors of the Hessian,

yield the directions along which the cost function’s curvature is maximised (with

the curvature given by the corresponding eigenvalues). That is, the eigenvec-

tors with highest eigenvalues correspond to the directions in parameter space to

which the cost is most sensitive. In Fig. 5.22 we plot the eigenvalues for the three

Hessian matrices corresponding to the three networks (again, parameters were

scaled to [0, 1] before calculating the matrices). Interestingly, we see that for all

networks the majority of eigenvalues are very close to 0, which suggests that the

landscape is relatively flat except along a few specific directions. We also note

again the difference in behaviour between network 2 and the others, where the

former has modelled a paraboloid with significantly steeper curvatures.

We can attempt to further investigate the local landscape behaviour by plot-

ting the principal directions (eigenvectors) themselves, as shown in Fig. 5.23 (note

that we have omitted network 2 since, as discussed above, it appears to have been

poorly fitted when the optimisation was stopped). We first note the large array
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Figure 5.22: Eigenvalues of Hessian matrices at the best parameters, for the
longest run. These represent the curvatures of the landscapes modelled by the
networks.

of directions with low curvature in the background, corresponding to the long

tail of low eigenvalues in Fig. 5.22. Looking at the directions corresponding to

high curvatures, large components tentatively indicate parameters on which the

cost depends sensitively. For example, this reasoning suggests that the cost is

sensitive to the final few milliseconds of the repump detuning, and to the initial

few milliseconds of the magnetic field gradient. The former is not surprising,

since if the repump is detuned too far then any trapping or polarisation gradient

cooling could be compromised, while detuning too little could cause excess reab-

sorption and thus outward pressure on the MOT. The latter is more unexpected,

so it would be very interesting to test the sensitivity to those parameters experi-

mentally. Unfortunately it is hard to conclude anything about the sensitivity to

perturbations in the trapping frequency, or in the magnetic field gradient during

the second half of the compression, due to the lack of any clear pattern. Ideally

we would also be able to understand the sensitivity to combinations of param-

eters varying together, rather than only individual parameters in isolation, but

this similarly appears infeasible at present. Longer optimisation runs could make

this analysis more useful, since the networks would be closer to convergence and

thus would hopefully exhibit more consistent and less noisy behaviour.
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Figure 5.23: Principal directions (Hessian eigenvectors) of networks 1 and 3 at
the best parameters, for the longest run. Each direction is a unit 63-dimensional
vector, with components corresponding to perturbations to the usual parameters.
Each direction is coloured according to the curvature of the landscape along that
direction (the corresponding eigenvalue). As usual, even though the quantities
are discrete they are plotted with lines for the sake of clearer visualisation.
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5.4 Conclusion

We have presented a fast, scalable machine learning algorithm based on neural

networks for performing automatic optimisation of arbitrary physical systems.

After giving a brief introduction to the relevant theory of artificial neural net-

works, we described the core unique components of the algorithm. We then

demonstrated the potential of the algorithm by presenting and discussing the

preliminary results from applying it the MOT at the heart of a cold-atom gradi-

ent echo memory: in short, an enhancement in optical depth from 138, the best

value obtained via manual optimisation, to 448.

There is significant scope for future work related to this project. For a start,

the details of the MOT optimisation are still not well-understood. It would be

useful to understand why the algorithm tends to explore more aggressively at

later times (possibly by confirming the hypothesis presented earlier). More im-

portantly, an analysis of the different optimal ramps found by each run of the

machine learning algorithm to determine the common features would help to

understand why the ramps are so effective. Similarly, while we have given a

preliminary investigation into the local behaviour of the cost landscape in the

vicinity of particular high-performing parameter sets, it appears that there is sig-

nificantly more information to extract, and this could again help to understand

the physical mechanisms at play. Another potentially interesting avenue would be

to apply regularisation (as described in Section 5.2.1 for the neural network loss

function) to the experiment cost function. Specifically, a small penalty could be

applied to “complex” ramps exhibiting rapidly oscillating values or sharp changes,

which would encourage the algorithm to find ramps that both achieve high OD

and are simple. The outcome of this process would be interesting regardless of

whether the optimisation became more or less effective. A reduction in perfor-

mance after applying such regularisation would imply that these features are in

fact important, while any other result would at least yield simpler ramps that

might be amenable to simpler reasoning. Another possible approach to finding

more physically meaningful compression ramps would be to use a different param-

eterisation, for example based on Fourier coefficients. Such a parameterisation

could potentially be more efficient and yield simpler ramps.

There are also many possible improvements associated with the algorithm

itself. In the short term, application to a wider variety of experiments would help
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determine suitability of the chosen hyperparameters. As we have discussed, these

were chosen by testing on a simple, low-dimensional, simulated experiment, but

were still able to perform well when applied to the MOT. However, more data

points are necessary before concluding that they work well in general.

In the medium term more significant adaptations could be beneficial. For

example, a wider distribution of networks and thus improved exploration could

be obtained by using bagging with more networks, or making another attempt

at using dropout or Bayes by backpropagation. With specialised hardware these

techniques may become more feasible than they were in this first application of

the algorithm, which was performed on standard consumer hardware. Another

approach to potentially improving the exploration capabilities of the algorithm,

inspired by the observations in Section 5.3.4 regarding the convergence to different

points based on the initial training data, would be to train each network of the

ensemble on a random subset of the data, as opposed to all the data. This would

most likely slow down the rate of convergence of the algorithm to low costs, but

could significantly improve its ability to identify multiple spatially separate local

minima.

Longer term there are many exciting fundamental improvements to the algo-

rithm. One would be to implement a hybrid algorithm utilising different types of

model for different regimes of the optimisation procedure. For instance, neural

networks—which, as we have seen, can efficiently handle high-dimensional pa-

rameter spaces—could be used in the initial stages to identify promising areas of

the space and principal directions along which to explore, and then control could

be passed to a slower Gaussian process-based algorithm that may be capable of

more accurately modelling the simplified space.

An important improvement would be to more explicitly support stochastic or

time-varying cost landscapes, since these would be ubiquitous in practice. It is not

entirely clear how we would approach this problem, although possibilities include

artificially adjusting training data based on its staleness (by under-sampling old

data during training, for instance), and using a more sophisticated loss function

(that can take into account stochastic costs) while training the network[333, 334].

Another exciting prospect involves utilising a wider variety of neural networks.

At present the same neural networks are used throughout the procedure, and all

have the same hyperparameters. For optimisation runs involving many more eval-

uations of the experiment it is possible to envisage a scenario in which a much
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larger ensemble of networks, with a variety of hyperparameters, are trained si-

multaneously, and networks are discarded and replaced if they predict poorly. If

replacement networks were chosen based on the features of high-performing net-

works, we would essentially have implemented a genetic algorithm for automati-

cally choosing and updating the neural networks; this is known as neuroevolution,

and is a well-studied technique[335–337].



158 CHAPTER 5. AUTOMATED OPTIMISATION



Chapter 6

Conclusions and outlook

In this thesis we have considered four different types of physical system, and four

corresponding methods for optimising their performances. Generally speaking,

the systems have become less analytically tractable from chapter to chapter, and

the optimisation techniques correspondingly more general.

We first investigated, in Chapter 2, the prospect of enhancing the sensitivity

of interferometer-based gravitational wave detectors by injecting squeezed light

generated by a cavity optomechanical system. Broadband sensitivity enhance-

ment requires squeezed light exhibiting specific frequency-dependent quadrature

rotation. We derived an expression describing the output field of such a system,

and found that while the field exhibits quadrature rotation, this rotation occurs

in the opposite direction to that required by gravitational wave detectors. As

a result, while sensitivity can be enhanced at high and low frequencies, there is

necessarily a band of central frequencies at which sensitivity is reduced. Thus

optomechanical squeezing is unsuitable in general for gravitational wave detec-

tors, although it could potentially find uses in particular unconventional modes

of operation.

In Chapter 3 we derived a general scheme for synthesising custom optical

spring potentials in cavity optomechanical systems. This scheme allows one to

tailor the displacement-dependent forces experienced by the cavity mirrors far be-

yond what is achievable merely by changing the cavity finesse, potentially yielding

performance improvements or unlocking entirely new applications. As a specific

example we considered a gravitational sensor based on a levitated cavity mirror,

and demonstrated that by utilising the scheme an improvement in sensitivity by

a factor of 5 would be expected.
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In Chapter 4 we introduced a nanowire-based optomechanical sensor for tran-

sient forces. We enhanced signal-to-noise ratio by a factor of 3 by implement-

ing a non-stationary feedback cooling protocol to damp the nanowire’s motion

immediately prior to the arrival of the signal. The improved sensor had a force

resolution of 2× 10−16 N. Next we considered two non-stationary post-processing

techniques, one based on a Kalman filter and one based on a simulation of the

physical feedback. We showed that both techniques yielded similar sensitivity en-

hancements to the physical feedback cooling, but did not require the additional

experimental complexity.

Finally, in Chapter 5 we presented a machine learning algorithm capable of

optimising arbitrary physical systems without human input. After giving some

background from the theory of artificial neural networks we discussed the most

interesting details of the algorithm. To demonstrate the algorithm’s potential we

then applied it to a magneto-optical trap (MOT) used for a quantum memory,

and achieved an improvement in optical depth from 138 to 448. We then analysed

the behaviour of the algorithm during the optimisation of the MOT. Our findings

showed that the algorithm was not exploring the full parameter space in detail

during each individual run. This suggests that even better performance—beyond

the factor of 3 improvement in optical depth already observed—could potentially

be attained with minor modifications to the algorithm.

From a general perspective, achieving optimal performance will become in-

creasingly important as experimental quantum systems evolve into commercial

quantum technologies. It will be necessary to optimise a variety of systems,

ranging from those that are understood in detail to those whose dynamics are

essentially unknown, and a corresponding range of optimisation techniques will

be required.

We expect that general-purpose optimisation procedures will be particularly

suitable for fine-tuning system parameters in the final stages of development.

Techniques such as that presented in Chapter 5 (and, to some degree, Chapter 4)

are thus likely to become ubiquitous in this setting. We also expect these tech-

niques to grow in popularity in both experimental physics and the research and

development phases of commercial technologies, but more as exploratory tools

for complex systems than as methods for extracting optimal performance. For

example, the results in Chapter 5 indicate that MOTs can be optimised to new

levels by employing highly unexpected compression phases. However, presumably
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even better performance could be achieved if the physical mechanism behind this

process was understood, since then we may be able to perform principled system-

specific optimisation in the style of Chapters 2 and 3. In the near future we

expect this picture to evolve dramatically. The capabilities of machine learning

are growing extremely rapidly at present, so it is likely that we will soon see al-

gorithms capable of accurately modelling and optimising complex systems to an

even greater degree than that presented here. If this is the case then a new chal-

lenge may emerge for physicists: trying to understand the physical mechanisms

behind the performances of automatically-optimised systems. This process could

provide fascinating breakthroughs from a physical perspective, and moreover is

necessary in order to extract truly maximal performance via bespoke techniques.

In any case, the future of optimisation—performed by a combination of hu-

man and machine—holds many exciting opportunities and challenges, and will be

instrumental in the evolution of quantum optical systems in both experimental

and commercial applications.
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and C. S. Yannoni, “Magnetic resonance force microscopy”, Reviews of

Modern Physics 67, 249–265 (1995).

[148] H. J. Mamin, R. Budakian, B. W. Chui, and D. Rugar, “Detection and

manipulation of statistical polarization in small spin ensembles”, Physical

Review Letters 91, 207604 (2003).

http://dx.doi.org/10.1038/ncomms5663
http://dx.doi.org/10.1038/32373
http://dx.doi.org/10.1117/12.609402
http://dx.doi.org/10.1117/12.609402
http://dx.doi.org/10.1103/PhysRevLett.97.133601
http://dx.doi.org/10.1103/PhysRevLett.56.930
http://dx.doi.org/10.1103/PhysRevLett.56.930
http://dx.doi.org/10.1063/1.1418256
http://dx.doi.org/10.1126/science.2928794
http://dx.doi.org/10.1038/nnano.2009.156
http://dx.doi.org/10.1038/nnano.2009.156
http://dx.doi.org/10.1063/1.104757
http://dx.doi.org/10.1103/RevModPhys.67.249
http://dx.doi.org/10.1103/RevModPhys.67.249
http://dx.doi.org/10.1103/PhysRevLett.91.207604
http://dx.doi.org/10.1103/PhysRevLett.91.207604


176 BIBLIOGRAPHY

[149] D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin de-

tection by magnetic resonance force microscopy”, Nature 430, 329–332

(2004).

[150] C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar,

“Nanoscale magnetic resonance imaging”, Proceedings of the National

Academy of Sciences 106, 1313–1317 (2009).

[151] K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, “Ultrasensitive nano-

electromechanical mass detection”, Applied Physics Letters 84, 4469–4471

(2004).

[152] T. D. Stowe, K. Yasumura, T. W. Kenny, D. Botkin, K. Wago, and D.

Rugar, “Attonewton force detection using ultrathin silicon cantilevers”,

Applied Physics Letters 71, 288–290 (1997).

[153] M. M. Yazdanpanah, M. Hosseini, S. Pabba, S. M. Berry, V. V. Dobrokho-

tov, A. Safir, R. S. Keynton, and R. W. Cohn, “Micro-wilhelmy and related

liquid property measurements using constant-diameter nanoneedle-tipped

atomic force microscope probes”, Langmuir 24, 13753–13764 (2008).

[154] P. Gao and Y. Cai, “Label-free detection of the aptamer binding on pro-

tein patterns using kelvin probe force microscopy (kpfm)”, Analytical and

Bioanalytical Chemistry 394, 207–214 (2009).

[155] A. Hopkins, K. Jacobs, S. Habib, and K. Schwab, “Feedback cooling of a

nanomechanical resonator”, Physical Review B 68, 235328 (2003).

[156] S. Mancini, D. Vitali, and P. Tombesi, “Optomechanical cooling of a macro-

scopic oscillator by homodyne feedback”, Physical Review Letters 80, 688–

691 (1998).

[157] P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by

radiation pressure”, Physical Review Letters 83, 3174–3177 (1999).

[158] I. Wilson-Rae, P. Zoller, and A. Imamoğlu, “Laser cooling of a nanome-
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[239] J. Š́ıma, “Training a single sigmoidal neuron is hard”, Neural Computation

14, 2709–2728 (2002).

[240] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop”, in

Neural networks: tricks of the trade, edited by G. B. Orr and K.-R. Müller

(Springer, Berlin, 1998), pp. 9–50, isbn: 978-3-540-49430-0.

[241] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-

tations by back-propagating errors”, Nature 323, 533–536 (1986).

http://dx.doi.org/10.1109/CDC.1996.573465
http://dx.doi.org/10.1109/CDC.1996.573465
http://dx.doi.org/10.1016/S0301-0104(97)00068-2
http://dx.doi.org/10.1016/S0301-0104(97)00068-2
http://dx.doi.org/10.1063/1.478081
http://dx.doi.org/10.1063/1.478081
http://dx.doi.org/10.1016/S0301-0104(01)00214-2
http://dx.doi.org/10.1016/S0301-0104(03)00096-X
http://dx.doi.org/10.1038/srep25890
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1162/089976602760408035
http://dx.doi.org/10.1162/089976602760408035
http://dx.doi.org/10.1007/3-540-49430-8_2
http://dx.doi.org/10.1038/323533a0


184 BIBLIOGRAPHY

[242] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for

online learning and stochastic optimization”, Journal of Machine Learning

Research 12, 2121–2159 (2011).

[243] D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization”,

in International conference on learning representations 2015 (2015).

[244] Y. Yao, L. Rosasco, and A. Caponnetto, “On early stopping in gradient

descent learning”, Constructive Approximation 26, 289–315 (2007).

[245] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-

nov, “Dropout: a simple way to prevent neural networks from overfitting”,

Journal of Machine Learning Research 15, 1929–1958 (2014).

[246] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep network

training by reducing internal covariate shift”, Computing Research Repos-

itory, abs/1502.03167 (2015).

[247] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward net-

works are universal approximators”, Neural Networks 2, 359–366 (1989).

[248] G. Cybenko, “Approximation by superpositions of a sigmoidal function”,

Mathematics of Control, Signals and Systems 2, 303–314 (1989).

[249] K. Hornik, “Approximation capabilities of multilayer feedforward networks”,

Neural Networks 4, 251–257 (1991).

[250] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient flow

in recurrent nets: the difficulty of learning long-term dependencies”, in A

field guide to dynamical recurrent neural networks , edited by S. C. Kremer

and J. F. Kolen (IEEE Press, New York, 2001), isbn: 978-0-7803-5369-5.

[251] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural net-

works”, in Proceedings of the 14th international conference on artificial

intelligence and statistics, Vol. 15, edited by G. Gordon, D. Dunson, and

M. Dud́ık (2011), pp. 315–323.

[252] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, Nature 521, 436–

444 (2015).

[253] D. Hendrycks and K. Gimpel, “Bridging nonlinearities and stochastic regu-

larizers with gaussian error linear units”, Computing Research Repository,

abs/1606.08415 (2016).

http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dl.acm.org/citation.cfm?id=1953048.2021068
https://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1007/s00365-006-0663-2
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1109/9780470544037.ch14
http://dx.doi.org/10.1109/9780470544037.ch14
http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415


BIBLIOGRAPHY 185

[254] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “Exploring strate-

gies for training deep neural networks”, Journal of Machine Learning Re-

search 10, 1–40 (2009).
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