15,503 research outputs found
Advances in delimiting the Hilbert-Schmidt separability probability of real two-qubit systems
We seek to derive the probability--expressed in terms of the Hilbert-Schmidt
(Euclidean or flat) metric--that a generic (nine-dimensional) real two-qubit
system is separable, by implementing the well-known Peres-Horodecki test on the
partial transposes (PT's) of the associated 4 x 4 density matrices). But the
full implementation of the test--requiring that the determinant of the PT be
nonnegative for separability to hold--appears to be, at least presently,
computationally intractable. So, we have previously implemented--using the
auxiliary concept of a diagonal-entry-parameterized separability function
(DESF)--the weaker implied test of nonnegativity of the six 2 x 2 principal
minors of the PT. This yielded an exact upper bound on the separability
probability of 1024/{135 pi^2} =0.76854$. Here, we piece together
(reflection-symmetric) results obtained by requiring that each of the four 3 x
3 principal minors of the PT, in turn, be nonnegative, giving an
improved/reduced upper bound of 22/35 = 0.628571. Then, we conclude that a
still further improved upper bound of 1129/2100 = 0.537619 can be found by
similarly piecing together the (reflection-symmetric) results of enforcing the
simultaneous nonnegativity of certain pairs of the four 3 x 3 principal minors.
In deriving our improved upper bounds, we rely repeatedly upon the use of
certain integrals over cubes that arise. Finally, we apply an independence
assumption to a pair of DESF's that comes close to reproducing our numerical
estimate of the true separability function.Comment: 16 pages, 9 figures, a few inadvertent misstatements made near the
end are correcte
Application of the Bead Perturbation Technique to a Study of a Tunable 5 GHz Annular Cavity
Microwave cavities for a Sikivie-type axion search are subject to several
constraints. In the fabrication and operation of such cavities, often used at
frequencies where the resonator is highly overmoded, it is important to be able
to reliably identify several properties of the cavity. Those include
identifying the symmetry of the mode of interest, confirming its form factor,
and determining the frequency ranges where mode crossings with intruder levels
cause unacceptable admixture, thus leading to the loss of purity of the mode of
interest. A simple and powerful diagnostic for mapping out the electric field
of a cavity is the bead perturbation technique. While a standard tool in
accelerator physics, we have, for the first time, applied this technique to
cavities used in the axion search. We report initial results from an extensive
study for the initial cavity used in the HAYSTAC experiment. Two effects have
been investigated: the role of rod misalignment in mode localization, and
mode-mixing at avoided crossings of TM/TE modes. Future work will extend these
results by incorporating precision metrology and high-fidelity simulations.Comment: 6 pages, 4 figures, submitted to the 2nd Workshop on Microwave
Cavities and Detectors for Axion Researc
Effects of a Geographically-Targeted Intervention and Creative Outreach to Reduce Shelter Intake in Portland, Oregon
Animal shelters focus much of their efforts towards decreasing euthanasia and one of the best ways to reduce euthanasia risk may be to prevent cats and dogs from ever entering a shelter. This study, conducted in Portland, Oregon, relied on the capabilities of Geographic Information Systems (GIS) to precisely and scientifically identify an intervention area (with high shelter intake) and to identify control areas to compare the project results with community-wide trends. The intervention itself was designed and implemented in a comprehensive way by seeking numerous paths to engage pet owners and reduce shelter intake of cats and Pit Bull type dogs. This research highlighted the ability of Geographic Information Systems (GIS) to significantly improve a community's capacity to identify the most appropriate locations to focus resources and to closely track and measure interventions. Portland's targeted intervention to reduce shelter intake utilized many outreach tools with varying levels of impact. The overall intervention yielded a reduction in intake of owned cats that was greater in total numbers and percentage than four control areas. Furthermore, this work identified a percentage of cat spay/neuter out of the estimated number of owned, originally intact cats within the intervention and control areas. As percentages approached or surpassed 20%, those areas realized larger intake reductions than control areas with lower percentages
The responses of people to virtual humans in an immersive virtual environment
This paper presents an experiment investigating the impact of behavior and responsiveness
on social responses to virtual humans in an immersive virtual environment
(IVE). A number of responses are investigated, including presence, copresence, and
two physiological responsesâheart rate and electrodermal activity (EDA). Our
findings suggest that increasing agentsâ responsiveness even on a simple level can
have a significant impact on certain aspects of peopleâs social responses to humanoid
agents.
Despite being aware that the agents were computer-generated, participants with
higher levels of social anxiety were significantly more likely to avoid âdisturbingâ
them. This suggests that on some level people can respond to virtual humans as
social actors even in the absence of complex interaction.
Responses appear to be shaped both by the agentsâ behaviors and by peopleâs expectations
of the technology. Participants experienced a significantly higher sense of
personal contact when the agents were visually responsive to them, as opposed to
static or simply moving. However, this effect diminished with experienced computer
users. Our preliminary analysis of objective heart-rate data reveals an identical pattern
of responses
Spin state transition in LaCoO3 by variational cluster approximation
The variational cluster approximation is applied to the calculation of
thermodynamical quantities and single-particle spectra of LaCoO3. Trial
self-energies and the numerical value of the Luttinger-Ward functional are
obtained by exact diagonalization of a CoO6 cluster. The VCA correctly predicts
LaCoO3 as a paramagnetic insulator and a gradual and relatively smooth increase
of the occupation of high-spin Co3+ ions causes the temperature dependence of
entropy and magnetic susceptibility. The single particle spectral function
agrees well with experiment, the experimentally observed temperature dependence
of photoelectron spectra is reproduced satisfactorily. Remaining discrepancies
with experiment highlight the importance of spin orbit coupling and local
lattice relaxation.Comment: Revtex file with 10 eps figure
A priori probability that a qubit-qutrit pair is separable
We extend to arbitrarily coupled pairs of qubits (two-state quantum systems)
and qutrits (three-state quantum systems) our earlier study (quant-ph/0207181),
which was concerned with the simplest instance of entangled quantum systems,
pairs of qubits. As in that analysis -- again on the basis of numerical
(quasi-Monte Carlo) integration results, but now in a still higher-dimensional
space (35-d vs. 15-d) -- we examine a conjecture that the Bures/SD (statistical
distinguishability) probability that arbitrarily paired qubits and qutrits are
separable (unentangled) has a simple exact value, u/(v Pi^3)= >.00124706, where
u = 2^20 3^3 5 7 and v = 19 23 29 31 37 41 43 (the product of consecutive
primes). This is considerably less than the conjectured value of the Bures/SD
probability, 8/(11 Pi^2) = 0736881, in the qubit-qubit case. Both of these
conjectures, in turn, rely upon ones to the effect that the SD volumes of
separable states assume certain remarkable forms, involving "primorial"
numbers. We also estimate the SD area of the boundary of separable qubit-qutrit
states, and provide preliminary calculations of the Bures/SD probability of
separability in the general qubit-qubit-qubit and qutrit-qutrit cases.Comment: 9 pages, 3 figures, 2 tables, LaTeX, we utilize recent exact
computations of Sommers and Zyczkowski (quant-ph/0304041) of "the Bures
volume of mixed quantum states" to refine our conjecture
Cortical pain responses in human infants
Despite the recent increase in our understanding of the development of pain processing, it is still not known whether premature infants are capable of processing pain at a cortical level. In this study, changes in cerebral oxygenation over the somatosensory cortex were measured in response to noxious stimulation using real-time near-infrared spectroscopy in 18 infants aged between 25 and 45 weeks postmenstrual age. The noxious stimuli were heel lances performed for routine blood sampling; no blood tests were performed solely for the purpose of the study. Noxious stimulation produced a clear cortical response, measured as an increase in total hemoglobin concentration [HbT] in the contralateral somatosensory cortex, from 25 weeks (mean Delta[HbT] = 7.74 mu mol/L; SE, 1.10). Cortical responses were significantly greater in awake compared with sleeping infants, with a mean difference of 6.63 mu mol/L [95% confidence interval (CI) limits: 2.35, 10.91 mu mol/L; mean age, 35.2 weeks]. In awake infants, the response in the contralateral somatosensory cortex increased with age ( regression coefficient, 0.698 mu mol/L/week; 95% CI limits: 0.132, 1.265 mu mol/L/week) and the latency decreased with age (regression coefficient, -0.9861 mu mol/L/week; 95% CI limits: -1.5361, -0.4361 mu mol/L/week; age range, 25-38 weeks). The response was modality specific because no response was detected after non-noxious stimulation of the heel, even when accompanied by reflex withdrawal of the foot. We conclude that noxious information is transmitted to the preterm infant cortex from 25 weeks, highlighting the potential for both higher-level pain processing and pain-induced plasticity in the human brain from a very early age
Bures distance between two displaced thermal states
The Bures distance between two displaced thermal states and the corresponding
geometric quantities (statistical metric, volume element, scalar curvature) are
computed. Under nonunitary (dissipative) dynamics, the statistical distance
shows the same general features previously reported in the literature by
Braunstein and Milburn for two--state systems. The scalar curvature turns out
to have new interesting properties when compared to the curvature associated
with squeezed thermal states.Comment: 3 pages, RevTeX, no figure
- âŠ