386 research outputs found

    FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica:joint procedural recommendation of the EANM, SNMMI, and the PET Interest Group (PIG), and endorsed by the ASNC

    Get PDF
    Large vessel vasculitis (LVV) is defined as a disease mainly affecting the large arteries, with two major variants. Takayasu arteritis (TA) and giant cell arteritis (GCA). GCA often coexists with polymyalgia rheumatica (PMR) in the same patient, since both belong to the same disease spectrum. FDG-PET/CT is a functional imaging technique which is an established tool in oncology, and has also demonstrated a role in the field of inflammatory diseases. Functional FDG-PET combined with anatomical CT angiography, FDG-PET/CT(A), may be of synergistic value for optimal diagnosis, monitoring of disease activity, and evaluating damage progression in LVV There are currently no guidelines regarding PET imaging acquisition for LVV and PMR, even though standardization is of the utmost importance in order to facilitate clinical studies and for daily clinical practice. This work constitutes a joint procedural recommendation on FDG-PET/CT(A) imaging in large vessel vasculitis (LVV) and PMR from the Cardiovascular and Inflammation &amp; Infection Committees of the European Association of Nuclear Medicine (EANM), the Cardiovascular Council of the Society of Nuclear Medicine and Molecular Imaging (SNMMI), and the PET Interest Group (PIG), and endorsed by the American Society of Nuclear Cardiology (ASNC). The aim of this joint paper is to provide recommendations and statements, based on the available evidence in the literature and consensus of experts in the field, for patient preparation, and FDG-PET/CT(A) acquisition and interpretation for the diagnosis and follow-up of patients with suspected or diagnosed LVV and/or PMR. This position paper aims to set an internationally accepted standard for FDG-PET/CT(A) imaging and reporting of LVV and PMR.</p

    Is having a sweetheart enough to survive?

    Get PDF
    Almost three decades after the description of improved left ventricular function caused by chronic impaired coronary perfusion, and the rise of the term “Hibernation,” finding that hibernating myocardium is still a challenge for cardiologists

    Kidney Transplantation and Diagnostic Imaging:The Early Days and Future Advancements of Transplant Surgery

    Get PDF
    The first steps for modern organ transplantation were taken by Emerich Ullmann (Vienne, Austria) in 1902, with a dog-to-dog kidney transplant, and ultimate success was achieved by Joseph Murray in 1954, with the Boston twin brothers. In the same time period, the ground-breaking work of Wilhelm C. Röntgen (1895) and Maria Sklodowska-Curie (1903), on X-rays and radioactivity, enabled the introduction of diagnostic imaging. In the years thereafter, kidney transplantation and diagnostic imaging followed a synergistic path for their development, with key discoveries in transplant rejection pathways, immunosuppressive therapies, and the integration of diagnostic imaging in transplant programs. The first image of a transplanted kidney, a urogram with intravenous contrast, was shown to the public in 1956, and the first recommendations for transplantation diagnostic imaging were published in 1958. Transplant surgeons were eager to use innovative diagnostic modalities, with renal scintigraphy in the 1960s, as well as ultrasound and computed tomography in the 1970s. The use of innovative diagnostic modalities has had a great impact on the reduction of post-operative complications in kidney transplantation, making it one of the key factors for successful transplantation. For the new generation of transplant surgeons, the historical alignment between transplant surgery and diagnostic imaging can be a motivator for future innovations

    Quantitative imaging:systematic review of perfusion/flow phantoms

    Get PDF
    Background: We aimed at reviewing design and realisation of perfusion/flow phantoms for validating quantitative perfusion imaging (PI) applications to encourage best practices. Methods: A systematic search was performed on the Scopus database for “perfusion”, “flow”, and “phantom”, limited to articles written in English published between January 1999 and December 2018. Information on phantom design, used PI and phantom applications was extracted. Results: Of 463 retrieved articles, 397 were rejected after abstract screening and 32 after full-text reading. The 37 accepted articles resulted to address PI simulation in brain (n = 11), myocardial (n = 8), liver (n = 2), tumour (n = 1), finger (n = 1), and non-specific tissue (n = 14), with diverse modalities: ultrasound (n = 11), computed tomography (n = 11), magnetic resonance imaging (n = 17), and positron emission tomography (n = 2). Three phantom designs were described: basic (n = 6), aligned capillary (n = 22), and tissue-filled (n = 12). Microvasculature and tissue perfusion were combined in one compartment (n = 23) or in two separated compartments (n = 17). With the only exception of one study, inter-compartmental fluid exchange could not be controlled. Nine studies compared phantom results with human or animal perfusion data. Only one commercially available perfusion phantom was identified. Conclusion: We provided insights into contemporary phantom approaches to PI, which can be used for ground truth evaluation of quantitative PI applications. Investigators are recommended to verify and validate whether assumptions underlying PI phantom modelling are justified for their intended phantom application
    • …
    corecore