20 research outputs found

    Detecting the orientation of magnetic fields in galaxy clusters

    Full text link
    Clusters of galaxies, filled with hot magnetized plasma, are the largest bound objects in existence and an important touchstone in understanding the formation of structures in our Universe. In such clusters, thermal conduction follows field lines, so magnetic fields strongly shape the cluster's thermal history; that some have not since cooled and collapsed is a mystery. In a seemingly unrelated puzzle, recent observations of Virgo cluster spiral galaxies imply ridges of strong, coherent magnetic fields offset from their centre. Here we demonstrate, using three-dimensional magnetohydrodynamical simulations, that such ridges are easily explained by galaxies sweeping up field lines as they orbit inside the cluster. This magnetic drape is then lit up with cosmic rays from the galaxies' stars, generating coherent polarized emission at the galaxies' leading edges. This immediately presents a technique for probing local orientations and characteristic length scales of cluster magnetic fields. The first application of this technique, mapping the field of the Virgo cluster, gives a startling result: outside a central region, the magnetic field is preferentially oriented radially as predicted by the magnetothermal instability. Our results strongly suggest a mechanism for maintaining some clusters in a 'non-cooling-core' state.Comment: 48 pages, 21 figures, revised version to match published article in Nature Physics, high-resolution version available at http://www.cita.utoronto.ca/~pfrommer/Publications/pfrommer-dursi.pd

    Supernova remnants: the X-ray perspective

    Get PDF
    Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects.And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and thermal and non-thermal X-ray emission. The second half offers a review of the recent advances.The topics addressed there are core collapse and thermonuclear supernova remnants, SN 1987A, mature supernova remnants, mixed-morphology remnants, including a discussion of the recent finding of overionization in some of them, and finally X-ray synchrotron radiation and its consequences for particle acceleration and magnetic fields.Comment: Published in Astronomy and Astrophysics Reviews. This version has 2 column-layout. 78 pages, 42 figures. This replaced version has some minor language edits and several references have been correcte

    A strong X-ray polarization signal from the magnetar 1RXS J170849.0-400910

    No full text
    Magnetars are the most strongly magnetized neutron stars, and one of the most promising targets for X-ray polarimetric measurements. We present here the first Imaging X-ray Polarimetry Explorer observation of the magnetar 1RXS J170849.0-400910, jointly analyzed with a new Swift observation and archival NICER data. The total (energy- and phase-integrated) emission in the 2-8 keV energy range is linerarly polarized, at a similar to 35% level. The phase-averaged polarization signal shows a marked increase with energy, ranging from similar to 20% at 2-3 keV up to similar to 80% at 6-8 keV, while the polarization angle remains constant. This indicates that radiation is mostly polarized in a single direction. The spectrum is well reproduced by a combination of either two thermal (blackbody) components or a blackbody and a power law. Both the polarization degree and angle also show a variation with the spin phase, and the former is almost anticorrelated with the source counts in the 2-8 and 2-4 keV bands. We discuss the possible implications and interpretations, based on a joint analysis of the spectral, polarization, and pulsation properties of the source. A scenario in which the surface temperature is not homogeneous, with a hotter cap covered by a gaseous atmosphere and a warmer region in a condensed state, provides a satisfactory description of both the phase- and energy-dependent spectro-polarimetric data. The (comparatively) small size of the two emitting regions, required to explain the observed pulsations, does not allow to reach a robust conclusion about the presence of vacuum birefringence effects

    X-ray pulsar GRO J1008-57 as an orthogonal rotator

    No full text
    X-ray polarimetry is a unique way to probe the geometrical configuration of highly magnetized accreting neutron stars (X-ray pulsars). GRO J1008-57 is the first transient X-ray pulsar observed at two different flux levels by the Imaging X-ray Polarimetry Explorer (IXPE) during its outburst in November 2022. We find the polarization properties of GRO J1008-57 to be independent of its luminosity, with the polarization degree varying between nondetection and about 15% over the pulse phase. Fitting the phase-resolved spectro-polarimetric data with the rotating vector model allowed us to estimate the pulsar inclination (130 & DEG;, which is in good agreement with the orbital inclination), the position angle (75 & DEG;) of the pulsar spin axis, and the magnetic obliquity (& SIM;74 & DEG;). This makes GRO J1008-57 the first confidently identified nearly orthogonal rotator among X-ray pulsars. We discuss our results in the context of the neutron star atmosphere models and theories of the axis alignment of accreting pulsars

    IXPE observations of the quintessential wind-accreting X-ray pulsar Vela X-1

    Get PDF
    The radiation from accreting X-ray pulsars was expected to be highly polarized, with some estimates for the polarization degree of up to 80%. However, phase-resolved and energy-resolved polarimetry of X-ray pulsars is required in order to test different models and to shed light on the emission processes and the geometry of the emission region. Here we present the first results of the observations of the accreting X-ray pulsar Vela X-1 performed with the Imaging X-ray Polarimetry Explorer. Vela X-1 is considered to be the archetypal example of a wind-accreting, high-mass X-ray binary system, consisting of a highly magnetized neutron star accreting matter from its supergiant stellar companion. The spectropolarimetric analysis of the phase-averaged data for Vela X-1 reveals a polarization degree (PD) of 2.3% +/- 0.4% at the polarization angle (PA) of -47.degrees 3 +/- 5.degrees 4. A low PD is consistent with the results obtained for other X-ray pulsars and is likely related to the inverse temperature structure of the neutron star atmosphere. The energy-resolved analysis shows the PD above 5 keV reaching 6%-10% and a similar to 90 degrees difference in the PA compared to the data in the 2-3 keV range. The phase-resolved spectropolarimetric analysis finds a PD in the range 0%-9% with the PA varying between -80 degrees and 40 degrees
    corecore