800 research outputs found

    Feedback control of thermal lensing in a high optical power cavity

    Get PDF
    This paper reports automatic compensation of strong thermal lensing in a suspended 80 m optical cavity with sapphire test mass mirrors. Variation of the transmitted beam spot size is used to obtain an error signal to control the heating power applied to the cylindrical surface of an intracavity compensation plate. The negative thermal lens created in the compensation plate compensates the positive thermal lens in the sapphire test mass, which was caused by the absorption of the high intracavity optical power. The results show that feedback control is feasible to compensate the strong thermal lensing expected to occur in advanced laser interferometric gravitational wave detectors. Compensation allows the cavity resonance to be maintained at the fundamental mode, but the long thermal time constant for thermal lensing control in fused silica could cause difficulties with the control of parametric instabilities.This research was supported by the Australian Research Council and the Department of Education, Science and Training and by the U.S. National Science Foundation, through LIGO participation in the HOPF

    Compensation of Strong Thermal Lensing in High Optical Power Cavities

    Get PDF
    In an experiment to simulate the conditions in high optical power advanced gravitational wave detectors such as Advanced LIGO, we show that strong thermal lenses form in accordance with predictions and that they can be compensated using an intra-cavity compensation plate heated on its cylindrical surface. We show that high finesse ~1400 can be achieved in cavities with internal compensation plates, and that the cavity mode structure can be maintained by thermal compensation. It is also shown that the measurements allow a direct measurement of substrate optical absorption in the test mass and the compensation plate.Comment: 8 page

    Report on an all-sky LIGO search for periodic gravitational waves in the S4 data

    Full text link
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1000 Hz and having a negative frequency time derivative with magnitude between zero and 10810^{-8} Hz/s. Data from the fourth LIGO science run have been used in this search. Three different semi-coherent methods of summing strain power were applied. Observing no evidence for periodic gravitational radiation, we report upper limits on strain amplitude and interpret these limits to constrain radiation from rotating neutron stars.Comment: 5 pages, 1 figure, presented at Amaldi7, Sydney (July 2007

    Searching for stochastic gravitational-wave background with the co-located LIGO interferometers

    Full text link
    This paper presents techniques developed by the LIGO Scientific Collaboration to search for the stochastic gravitational-wave background using the co-located pair of LIGO interferometers at Hanford, WA. We use correlations between interferometers and environment monitoring instruments, as well as time-shifts between two interferometers (described here for the first time) to identify correlated noise from non-gravitational sources. We veto particularly noisy frequency bands and assess the level of residual non-gravitational coupling that exists in the surviving data.Comment: Proceedings paper from the 7th Edoardo Amaldi Conference on Gravitational Waves, held in Sydney, Australia from 8-14 July 2007. Accepted to J. Phys.: Conf. Se

    Hierarchical Hough all-sky search for periodic gravitational waves in LIGO S5 data

    Full text link
    We describe a new pipeline used to analyze the data from the fifth science run (S5) of the LIGO detectors to search for continuous gravitational waves from isolated spinning neutron stars. The method employed is based on the Hough transform, which is a semi-coherent, computationally efficient, and robust pattern recognition technique. The Hough transform is used to find signals in the time-frequency plane of the data whose frequency evolution fits the pattern produced by the Doppler shift imposed on the signal by the Earth's motion and the pulsar's spin-down during the observation period. The main differences with respect to previous Hough all-sky searches are described. These differences include the use of a two-step hierarchical Hough search, analysis of coincidences among the candidates produced in the first and second year of S5, and veto strategies based on a χ2\chi^2 test.Comment: 7 pages, 2 figures, Amaldi08 proceedings, submitted to JPC

    Observation of a potential future sensitivity limitation from ground motion at LIGO Hanford

    Get PDF
    A first detection of terrestrial gravity noise in gravitational-wave detectors is a formidable challenge. With the help of environmental sensors, it can in principle be achieved before the noise becomes dominant by estimating correlations between environmental sensors and the detector. The main complication is to disentangle different coupling mechanisms between the environment and the detector. In this paper, we analyze the relations between physical couplings and correlations that involve ground motion and LIGO strain data h(t) recorded during its second science run in 2016 and 2017. We find that all noise correlated with ground motion was more than an order of magnitude lower than dominant low-frequency instrument noise, and the dominant coupling over part of the spectrum between ground and h(t) was residual coupling through the seismic-isolation system. We also present the most accurate gravitational coupling model so far based on a detailed analysis of data from a seismic array. Despite our best efforts, we were not able to unambiguously identify gravitational coupling in the data, but our improved models confirm previous predictions that gravitational coupling might already dominate linear ground-to-h(t) coupling over parts of the low-frequency, gravitational-wave observation band

    Optomechanical characterization of acoustic modes in a mirror

    Full text link
    We present an experimental study of the internal mechanical vibration modes of a mirror. We determine the frequency repartition of acoustic resonances via a spectral analysis of the Brownian motion of the mirror, and the spatial profile of the acoustic modes by monitoring their mechanical response to a resonant radiation pressure force swept across the mirror surface. We have applied this technique to mirrors with cylindrical and plano-convex geometries, and compared the experimental results to theoretical predictions. We have in particular observed the gaussian modes predicted for plano-convex mirrors.Comment: 8 pages, 8 figures, RevTe

    Observation of Three Mode Parametric Interactions in Long Optical Cavities

    Get PDF
    We report the first observation of three-mode opto-acoustic parametric interactions of the type predicted to cause parametric instabilities in an 80 m long, high optical power cavity that uses suspended sapphire mirrors. Resonant interaction occurs between two distinct optical modes and an acoustic mode of one mirror when the difference in frequency between the two optical cavity modes is close to the frequency of the acoustic mode. Experimental results validate the theory of parametric instability in high power optical cavities.Comment: 10 pages and 5 figure
    corecore