862 research outputs found
Feedback control of thermal lensing in a high optical power cavity
This paper reports automatic compensation of strong thermal lensing in a suspended 80 m optical cavity with sapphire test mass mirrors. Variation of the transmitted beam spot size is used to obtain an error signal to control the heating power applied to the cylindrical surface of an intracavity compensation plate. The negative thermal lens created in the compensation plate compensates the positive thermal lens in the sapphire test mass, which was caused by the absorption of the high intracavity optical power. The results show that feedback control is feasible to compensate the strong thermal lensing expected to occur in advanced laser interferometric gravitational wave detectors. Compensation allows the cavity resonance to be maintained at the fundamental mode, but the long thermal time constant for thermal lensing control in fused silica could cause difficulties with the control of parametric instabilities.This research was supported by the Australian
Research Council and the Department of Education,
Science and Training and by the U.S. National Science Foundation,
through LIGO participation in the HOPF
Compensation of Strong Thermal Lensing in High Optical Power Cavities
In an experiment to simulate the conditions in high optical power advanced
gravitational wave detectors such as Advanced LIGO, we show that strong thermal
lenses form in accordance with predictions and that they can be compensated
using an intra-cavity compensation plate heated on its cylindrical surface. We
show that high finesse ~1400 can be achieved in cavities with internal
compensation plates, and that the cavity mode structure can be maintained by
thermal compensation. It is also shown that the measurements allow a direct
measurement of substrate optical absorption in the test mass and the
compensation plate.Comment: 8 page
Observation of a potential future sensitivity limitation from ground motion at LIGO Hanford
A first detection of terrestrial gravity noise in gravitational-wave detectors is a formidable challenge. With the help of environmental sensors, it can in principle be achieved before the noise becomes dominant by estimating correlations between environmental sensors and the detector. The main complication is to disentangle different coupling mechanisms between the environment and the detector. In this paper, we analyze the relations between physical couplings and correlations that involve ground motion and LIGO strain data h(t) recorded during its second science run in 2016 and 2017. We find that all noise correlated with ground motion was more than an order of magnitude lower than dominant low-frequency instrument noise, and the dominant coupling over part of the spectrum between ground and h(t) was residual coupling through the seismic-isolation system. We also present the most accurate gravitational coupling model so far based on a detailed analysis of data from a seismic array. Despite our best efforts, we were not able to unambiguously identify gravitational coupling in the data, but our improved models confirm previous predictions that gravitational coupling might already dominate linear ground-to-h(t) coupling over parts of the low-frequency, gravitational-wave observation band
dc readout experiment at the Caltech 40m prototype interferometer
The Laser Interferometer Gravitational Wave Observatory (LIGO) operates a 40m prototype interferometer on the Caltech campus. The primary mission of the prototype is to serve as an experimental testbed for upgrades to the LIGO interferometers and for gaining experience with advanced interferometric techniques, including detuned resonant sideband extraction (i.e. signal recycling) and dc readout (optical homodyne detection). The former technique will be employed in Advanced LIGO, and the latter in both Enhanced and Advanced LIGO. Using dc readout for gravitational wave signal extraction has several technical advantages, including reduced laser and oscillator noise couplings as well as reduced shot noise, when compared to the traditional rf readout technique (optical heterodyne detection) currently in use in large-scale ground-based interferometric gravitational wave detectors. The Caltech 40m laboratory is currently prototyping a dc readout system for a fully suspended interferometric gravitational wave detector. The system includes an optical filter cavity at the interferometer's output port, and the associated controls and optics to ensure that the filter cavity is optimally coupled to the interferometer. We present the results of measurements to characterize noise couplings in rf and dc readout using this system
Amplified Squeezed States: Analyzing Loss and Phase Noise
Phase-sensitive amplification of squeezed states is a technique to mitigate
high detection loss, e.g. at 2-micrometre wavelengths. Our analytical model of
amplified squeezed states expands on the effect of phase noise and derives two
practical parameters: the effective measurable squeezing and the effective
detection efficiency. A case study including realistic parameters demonstrates
the benefit of phase-sensitive amplification. We identified the phase noise in
the optical parametric amplifier (OPA) minimally affects the squeezing level,
enabling increased gain of the OPA. This scheme is compatible with proposed
gravitational-wave detectors and consistent with applications in quantum
systems that are degraded by output coupling loss in optical waveguides.Comment: 9 pages, 6 figures, 1 table. Submitted to Physical Review
Observation of Three Mode Parametric Interactions in Long Optical Cavities
We report the first observation of three-mode opto-acoustic parametric
interactions of the type predicted to cause parametric instabilities in an 80 m
long, high optical power cavity that uses suspended sapphire mirrors. Resonant
interaction occurs between two distinct optical modes and an acoustic mode of
one mirror when the difference in frequency between the two optical cavity
modes is close to the frequency of the acoustic mode. Experimental results
validate the theory of parametric instability in high power optical cavities.Comment: 10 pages and 5 figure
Observation of optical torsional stiffness in a high optical power cavity
We have observed negative optical torsional rigidity in an 80 m suspended high optical power cavity that would induce the Sidles-Sigg instability as a result of sufficient circulating power. The magnitude of the negative optical spring constant per unit power is a few μN m/W as the result of the optical torsional stiffness in the yaw mode of a suspended mirror Fabry-Ṕrot cavity. It has been observed to depend on the g -factor of the cavity which is in agreement with the Sidles-Sigg theory. © 2009 American Institute of Physics.Yaohui Fan, Lucienne Merrill, Chunnong Zhao, Li Ju, David Blair, Bram Slagmolen, David Hosken, Aidan Brooks, Peter Veitch, Damien Mudge, and Jesper Munch
Implications of Dedicated Seismometer Measurements on Newtonian-Noise Cancellation for Advanced LIGO
Newtonian gravitational noise from seismic fields will become a limiting noise source at low frequency for second-generation, gravitational-wave detectors. It is planned to use seismic sensors surrounding the detectors’ test masses to coherently subtract Newtonian noise using Wiener filters derived from the correlations between the sensors and detector data. In this Letter, we use data from a seismometer array deployed at the corner station of the Laser Interferometer Gravitational Wave Observatory (LIGO) Hanford detector combined with a tiltmeter for a detailed characterization of the seismic field and to predict achievable Newtonian-noise subtraction levels. As was shown previously, cancellation of the tiltmeter signal using seismometer data serves as the best available proxy of Newtonian-noise cancellation. According to our results, a relatively small number of seismometers is likely sufficient to perform the noise cancellation due to an almost ideal two-point spatial correlation of seismic surface displacement at the corner station, or alternatively, a tiltmeter deployed under each of the two test masses of the corner station at Hanford will be able to efficiently cancel Newtonian noise. Furthermore, we show that the ground tilt to differential arm-length coupling observed during LIGO’s second science run is consistent with gravitational coupling
- …